
Network Theorems

9.1 INTRODUCTION

This chapter introduces a number of theorems that have application throughout the field of
electricity and electronics. Not only can they be used to solve networks such as encountered
in the previous chapter, but they also provide an opportunity to determine the impact of a par-
ticular source or element on the response of the entire system. In most cases, the network to
be analyzed and the mathematics required to find the solution are simplified. All of the theo-
rems appear again in the analysis of ac networks. In fact, the application of each theorem to ac
networks is very similar in content to that found in this chapter.

The first theorem to be introduced is the superposition theorem, followed by Thévenin’s
theorem, Norton’s theorem, and the maximum power transfer theorem. The chapter concludes
with a brief introduction to Millman’s theorem and the substitution and reciprocity theorems.

9.2 SUPERPOSITION THEOREM

The superposition theorem is unquestionably one of the most powerful in this field. It has
such widespread application that people often apply it without recognizing that their maneu-
vers are valid only because of this theorem.

In general, the theorem can be used to do the following:

• Analyze networks such as introduced in the last chapter that have two or more sources
that are not in series or parallel.

• Reveal the effect of each source on a particular quantity of interest.
• For sources of different types (such as dc and ac which affect the parameters of the

network in a different manner), apply a separate analysis for each type, with the total
result simply the algebraic sum of the results.

• Become familiar with the superposition theorem

and its unique ability to separate the impact of

each source on the quantity of interest.

• Be able to apply Thévenin’s theorem to reduce any

two-terminal, series-parallel network with any

number of sources to a single voltage source and

series resistor.

• Become familiar with Norton’s theorem and how it

can be used to reduce any two-terminal, series-

parallel network with any number of sources to a

single current source and a parallel resistor.

• Understand how to apply the maximum power

transfer theorem to determine the maximum

power to a load and to choose a load that will

receive maximum power.

• Become aware of the reduction powers of

Millman’s theorem and the powerful implications

of the substitution and reciprocity theorems.

Th

9
Objectives
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The first two areas of application are described in detail in this section.
The last are covered in the discussion of the superposition theorem in the
ac portion of the text.

The superposition theorem states the following:

The current through, or voltage across, any element of a network is
equal to the algebraic sum of the currents or voltages produced
independently by each source.

In other words, this theorem allows us to find a solution for a current or
voltage using only one source at a time. Once we have the solution for
each source, we can combine the results to obtain the total solution. The
term algebraic appears in the above theorem statement because the cur-
rents resulting from the sources of the network can have different direc-
tions, just as the resulting voltages can have opposite polarities.

If we are to consider the effects of each source, the other sources ob-
viously must be removed. Setting a voltage source to zero volts is like
placing a short circuit across its terminals. Therefore,

when removing a voltage source from a network schematic, replace it
with a direct connection (short circuit) of zero ohms. Any internal
resistance associated with the source must remain in the network.

Setting a current source to zero amperes is like replacing it with an
open circuit. Therefore,

when removing a current source from a network schematic, replace it
by an open circuit of infinite ohms. Any internal resistance associated
with the source must remain in the network.

The above statements are illustrated in Fig. 9.1.

Rint

E

Rint

I Rint Rint

FIG. 9.1

Removing a voltage source and a current source to permit the application of the superposition theorem.

Since the effect of each source will be determined independently, the
number of networks to be analyzed will equal the number of sources.

If a particular current of a network is to be determined, the contribution
to that current must be determined for each source. When the effect of
each source has been determined, those currents in the same direction are
added, and those having the opposite direction are subtracted; the alge-
braic sum is being determined. The total result is the direction of the
larger sum and the magnitude of the difference.

Similarly, if a particular voltage of a network is to be determined, the
contribution to that voltage must be determined for each source. When
the effect of each source has been determined, those voltages with the
same polarity are added, and those with the opposite polarity are sub-
tracted; the algebraic sum is being determined. The total result has the po-
larity of the larger sum and the magnitude of the difference.

Superposition cannot be applied to power effects because the power is
related to the square of the voltage across a resistor or the current through
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a resistor. The squared term results in a nonlinear (a curve, not a straight
line) relationship between the power and the determining current or volt-
age. For example, doubling the current through a resistor does not dou-
ble the power to the resistor (as defined by a linear relationship) but, in
fact, increases it by a factor of 4 (due to the squared term). Tripling the
current increases the power level by a factor of 9. Example 9.3 demon-
strates the differences between a linear and a nonlinear relationship.

A few examples clarify how sources are removed and total solutions
obtained.

EXAMPLE 9.1 Using the superposition theorem, determine current I1

for the network in Fig. 9.2.

Solution: Since two sources are present, there are two networks to be
analyzed. First let us determine the effects of the voltage source by set-
ting the current source to zero amperes as shown in Fig. 9.3. Note that the
resulting current is defined as I�1 because it is the current through resistor
R1 due to the voltage source only.

Due to the open circuit, resistor R1 is in series (and, in fact, in paral-
lel) with the voltage source E. The voltage across the resistor is the ap-
plied voltage, and current I�1 is determined by

Now for the contribution due to the current source. Setting the voltage
source to zero volts results in the network in Fig. 9.4, which presents us
with an interesting situation. The current source has been replaced with
a short-circuit equivalent that is directly across the current source and re-
sistor R1. Since the source current takes the path of least resistance, it
chooses the zero ohm path of the inserted short-circuit equivalent, and the
current through R1 is zero amperes. This is clearly demonstrated by an
application of the current divider rule as follows:

Since and have the same defined direction in Figs. 9.3 and 9.4,
the total current is defined by

I1 � I�1 � I�1 � 5 A � 0 A � 5 A

Although this has been an excellent introduction to the application of
the superposition theorem, it should be immediately clear in Fig. 9.2 that
the voltage source is in parallel with the current source and load resistor
R1, so the voltage across each must be 30 V. The result is that I1 must be
determined solely by

EXAMPLE 9.2 Using the superposition theorem, determine the current
through the 12 � resistor in Fig. 9.5. Note that this is a two-source net-
work of the type examined in the previous chapter when we applied
branch-current analysis and mesh analysis.

Solution: Considering the effects of the 54 V source requires replacing
the 48 V source by a short-circuit equivalent as shown in Fig. 9.6. The re-
sult is that the 12 � and 4 � resistors are in parallel.

I1 �
V1

R1
�

E

R1
�

30 V

6 �
� 5 A

I�1I�1

I�1 �
RscI

Rsc � R1
�

10 � 2 I
0 � � 6 �

� 0 A

I�1 �
V1

R1
�

E

R1
�

30 V

6 �
� 5 A

I 3 A

I1

E 30 V R1 6 �

FIG. 9.2

Two-source network to be analyzed using the
superposition theorem in Example 9.1.

I�1

E 30 V R1 6 �

FIG. 9.3

Determining the effect of the 30 V supply on the
current I1 in Fig. 9.2.

R1 6 �
I

I

I

3 A

I��1

FIG. 9.4

Determining the effect of the 3 A current source on
the current I1 in Fig. 9.2.

R1

24 �

R3

4 �

E1 54 V

I2 = ?

R2 12 � E2 48 V

FIG. 9.5

Using the superposition theorem to determine the
current through the 12 � resistor (Example 9.2).
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48 V battery
replaced by short

circuit

3 �

RT

IsR1

24 �

R3

4 �

E1 54 V E1 54 V

R1

24 �

R2 12 � R2 12 � R3 4 �

I�2 I�2

FIG. 9.6

Using the superposition theorem to determine the effect of the 54 V voltage source on current I2 in Fig. 9.5.

The total resistance seen by the source is therefore

and the source current is

Using the current divider rule results in the contribution to I2 due to the
54 V source:

If we now replace the 54 V source by a short-circuit equivalent, the net-
work in Fig. 9.7 results. The result is a parallel connection for the 12 � and
24 � resistors.

I�2 �
R3Is

R3 � R2
�
14 � 2 12 A 2

4 � � 12 �
� 0.5 A

Is �
E1

RT

�
54 V

27 �
� 2 A

RT � R1 � R2 7  R3 � 24 � � 12 � � 4 � � 24 � � 3 � � 27 �

48 V

8 �

RT

E2

R1

24 �

R2 12 �

I��2 I��2

R3

4 �

E2 R2 12 �R1 24 �48 V

R3

4 �

54 V battery replaced
by short circuit

FIG. 9.7

Using the superposition theorem to determine the effect of the 48 V voltage source on current I2 in Fig. 9.5.

Therefore, the total resistance seen by the 48 V source is

and the source current is

Applying the current divider rule results in

I�2 �
R11Is 2

R1 � R2
�
124 � 2 14 A 2

24 � � 12 �
� 2.67 A

Is �
E2

RT

�
48 V

12 �
� 4 A

RT � R3 � R2 7  R1 � 4 � � 12 � � 24 � � 4 � � 8 � � 12 �
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It is now important to realize that current I2 due to each source has a
different direction, as shown in Fig. 9.8. The net current therefore is the
difference of the two and the direction of the larger as follows:

Using Figs. 9.6 and 9.7 in Example 9.2, we can determine the other
currents of the network with little added effort. That is, we can determine
all the branch currents of the network, matching an application of the
branch-current analysis or mesh analysis approach. In general, therefore,
not only can the superposition theorem provide a complete solution for
the network, but it also reveals the effect of each source on the desired
quantity.

EXAMPLE 9.3

a. Using the superposition theorem, determine the current through re-
sistor R2 for the network in Fig. 9.9.

b. Demonstrate that the superposition theorem is not applicable to
power levels.

Solutions:

a. In order to determine the effect of the 36 V voltage source, the current
source must be replaced by an open-circuit equivalent as shown in
Fig. 9.10. The result is a simple series circuit with a current equal to

Examining the effect of the 9 A current source requires replacing
the 36 V voltage source by a short-circuit equivalent as shown in Fig.
9.11. The result is a parallel combination of resistors R1 and R2. Ap-
plying the current divider rule results in

Since the contribution to current I2 has the same direction for each
source, as shown in Fig. 9.12, the total solution for current I2 is the
sum of the currents established by the two sources. That is,

I2 � I�2 � I�2 � 2 A � 6 A � 8 A

I�2 �
R11I 2

R1 � R2
�
112 � 2 19 A 2
12 � � 6 �

� 6 A

I�2 �
E

RT

�
E

R1 � R2
�

36 V

12 � � 6 �
�

36 V

18 �
� 2 A

I2 � I�2 � I�2 � 2.67 A � 0.5 A � 2.17 A
R2 12 �

I�2 = 0.5 A

I��2 = 2.67 A

R2 12 �

I2 = 2.17 A

FIG. 9.8

Using the results of Figs. 9.6 and 9.7 to determine
current I2 for the network in Fig. 9.5.

R2 6 �

R1

12 �

I

I2

9 AE 36 V

FIG. 9.9

Network to be analyzed in Example 9.3 using the
superposition theorem.

Current source
replaced by open circuit

R1

12 �

R2 6 �E 36 V
I�2

FIG. 9.10

Replacing the 9 A current source in Fig. 9.9 by an
open circuit to determine the effect of the 36 V

voltage source on current I2.

R2 6 �

R1

12 �

I = 9 A

I��2

I

FIG. 9.11

Replacing the 36 V voltage source by a short-circuit equivalent
to determine the effect of the 9 A current source on current I2.

R2 6 �

I2 = 8 A

R2 6 �

I�2 = 2 A

I��2 = 6 A

FIG. 9.12

Using the results of Figs. 9.10 and 9.11 to determine current I2

for the network in Fig. 9.9.

boy30444_ch09.qxd  3/22/06  12:50 PM  Page 349



350 ⏐⏐⏐ NETWORK THEOREMS
Th

b. Using Fig. 9.10 and the results obtained, the power delivered to the
6 � resistor is

Using Fig. 9.11 and the results obtained, the power delivered to the
6 � resistor is

Using the total results of Fig. 9.12, the power delivered to the 6 � re-
sistor is

It is now quite clear that the power delivered to the 6 � resistor
using the total current of 8 A is not equal to the sum of the power lev-
els due to each source independently. That is,

P1 � P2 � 24 W � 216 W � 240 W � PT � 348 W

To expand on the above conclusion and further demonstrate what is
meant by a nonlinear relationship, the power to the 6 � resistor ver-
sus current through the 6 � resistor is plotted in Fig. 9.13. Note that
the curve is not a straight line but one whose rise gets steeper with
increase in current level.

PT � I 2
2R2 � 18 A 2 216 � 2 � 384 W

P2 � 1I�2 2 21R2 2 � 16 A 2 216 � 2 � 216 W

P1 � 1I�2 2 21R2 2 � 12 A 2 216 � 2 � 24 W

400

300

200

100

x

0 1 2 3 4 5 6 7 8 I6� (A)

P (W)

y

z

{
Nonlinear curve

(I ′2) (I″2) (IT)

FIG. 9.13

Plotting power delivered to the 6 � resistor versus current through the resistor.

Recall from Fig. 9.11 that the power level was 24 W for a current
of 2 A developed by the 36 V voltage source, shown in Fig. 9.13.
From Fig. 9.12, we found that the current level was 6 A for a power
level of 216 W, shown in Fig. 9.13. Using the total current of 8 A, we
find that the power level in 384 W, shown in Fig. 9.13. Quite clearly,
the sum of power levels due to the 2 A and 6 A current levels does
not equal that due to the 8 A level. That is,

x � y � z

Now, the relationship between the voltage across a resistor and
the current through a resistor is a linear (straight line) one as shown
in Fig. 9.14, with

c � a � b
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R1 6 k�

R3
14 k�

R4 = 35 k�

R2 = 12 k�

6 mAI

I2

9 V

E
+ –

FIG. 9.15

Example 9.4.

4

3

2

1

0
12 24 36 48 V6� (V)

I (A)

a

c

Linear curveb

8

7

6

5

9
10

(I ′2) (I″2) (IT)

FIG. 9.14

Plotting I versus V for the 6 � resistor.

R1 6 k�

R3 14 k�

R2 12 k�

R4 35 k�

6 mAI

I ′2

6 mA

6 mA

I ′2

I

R4 35 k�R3 14 k�

R2 12 k�R1 6 k�

6 mA

FIG. 9.16

The effect of the current source I on the current I2.

EXAMPLE 9.4 Using the principle of superposition, find the current l2

through the 12 k� resistor in Fig. 9.15.

Solution: Considering the effect of the 6 mA current source (Fig. 9.16):

Current divider rule:

Considering the effect of the 9 V voltage source (Fig 9.17):

Since have the same direction through R2, the desired cur-
rent is the sum of the two:

 � 2.5 mA
 � 2 mA � 0.5 mA

I2 � I�2 � I�2

I�2 and I�2

I�2 �
E

R1 � R2
�

9 V

6 k� � 12 k�
� 0.5 mA

I�2 �
R1I

R1 � R2
�
16 k� 2 16 mA 2
6 k� � 12 k�

� 2 mA
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EXAMPLE 9.5 Find the current through the 2 � resistor of the network
in Fig. 9.18. The presence of three sources results in three different net-
works to be analyzed.

Solution: Considering the effect of the 12 V source (Fig. 9.19):

Considering the effect of the 6 V source (Fig. 9.20):

Considering the effect of the 3 A source (Fig. 9.21):
Applying the current divider rule,

The total current through the 2 � resistor appears in Fig. 9.22 and

I‡1 �
R2I

R1 � R2
�
14 � 2 13 A 2
2 � � 4 �

�
12 A

6
� 2 A

I�1 �
E2

R1 � R2
�

6 V

2 � � 4 �
�

6 V

6 �
� 1 A

I�1 �
E1

R1 � R2
�

12 V

2 � � 4 �
�

12 V

6 �
� 2 A

E1

R24 �

R1 2 �

I1

I 3 A

6 V12 V
+ –

+

–
E2

FIG. 9.18

Example 9.5.

R24 �

R12 �

E1

12 V

I�1I�1

I�1+ –

FIG. 9.19

The effect of E1 on the current I.

R24 �
R12 �

6 V E2
I�1 I�1

I  �1

+

–

FIG. 9.20

The effect of E2 on the current I1.

R24 �

R12 � 3 AI

I�1

FIG. 9.21

The effect of I on the current I1.

I1 I I" I"1�

�

�

�

�

� �

' '

1 A 1 A2 A 2 A

Same direction
as I1 in Fig. 9.18

Opposite direction
to I1 in Fig. 9.18

1 1

R1 2 � R1 2 �I�1  =  2  A I �1  =  1  A I�1  =  2  A I1  =  1  A

I1

FIG. 9.22

The resultant current I1 .

R1

6 k�

R2

12 k�

R3

14 k�

R4

35 k�

9 V

E

R1 6 k�

R3 14 k�

R2 12 k�

R4 35 k�

+ –9 V

+ –9 V

9 V

E

I�2

I�2

+ –+ –

FIG. 9.17

The effect of the voltage source E on the current I2 .

boy30444_ch09.qxd  3/22/06  12:51 PM  Page 352



THÉVENIN’S THEOREM ⏐⏐⏐ 353
Th

ETh

+

–

a

b

RTh

FIG. 9.24

Leon-Charles Thévenin.
Courtesy of the Bibliothèque École

Polytechnique, Paris, France.

French (Meaux, Paris)
(1857–1927)
Telegraph Engineer, Commandant and Educator

École Polytechnique and École Supérieure de
Télégraphie

Although active in the study and design of telegraphic
systems (including underground transmission), cylin-
drical condensers (capacitors), and electromagnet-
ism, he is best known for a theorem first presented in
the French Journal of Physics—Theory and Applica-
tions in 1883. It appeared under the heading of “Sur
un nouveau théorème d’électricité dynamique” (“On
a new theorem of dynamic electricity”) and was orig-
inally referred to as the equivalent generator theo-
rem. There is some evidence that a similar theorem
was introduced by Hermann von Helmholtz in 1853.
However, Professor Helmholtz applied the theorem
to animal physiology and not to communication or
generator systems, and therefore he has not received
the credit in this field that he might deserve. In the
early 1920s AT&T did some pioneering work using
the equivalent circuit and may have initiated the ref-
erence to the theorem as simply Thévenin’s theo-
rem. In fact, Edward L. Norton, an engineer at
AT&T at the time, introduced a current source
equivalent of the Thévenin equivalent currently re-
ferred to as the Norton equivalent circuit. As an
aside, Commandant Thévenin was an avid skier and
in fact was commissioner of an international ski com-
petition in Chamonix. France, in 1912.

9.3 THÉVENIN’S THEOREM

The next theorem to be introduced, Thévenin’s theorem, is probably one
of the most interesting in that it permits the reduction of complex net-
works to a simpler form for analysis and design.

In general, the theorem can be used to do the following:

• Analyze networks with sources that are not in series or parallel.
• Reduce the number of components required to establish the same

characteristics at the output terminals.
• Investigate the effect of changing a particular component on the

behavior of a network without having to analyze the entire network
after each change.

All three areas of application are demonstrated in the examples to follow.
Thévenin’s theorem states the following:

Any two-terminal dc network can be replaced by an equivalent circuit
consisting solely of a voltage source and a series resistor as shown in
Fig. 9.23.

The theorem was developed by Commandant Leon-Charles Thévenin in
1883 as described in Fig. 9.24.

To demonstrate the power of the theorem, consider the fairly complex
network of Fig. 9.25(a) with its two sources and series-parallel connections.
The theorem states that the entire network inside the blue shaded area can
be replaced by one voltage source and one resistor as shown in Fig. 9.25(b).
If the replacement is done properly, the voltage across, and the current
through, the resistor RL will be the same for each network. The value of RL

can be changed to any value, and the voltage, current, or power to the load
resistor is the same for each configuration. Now, this is a very powerful
statement—one that is verified in the examples to follow.

The question then is, How can you determine the proper value of
Thévenin voltage and resistance? In general, finding the Thévenin
resistance value is quite straightforward. Finding the Thévenin voltage
can be more of a challenge and, in fact, may require using the superposi-
tion theorem or one of the methods described in Chapter 8.

Fortunately, there are a series of steps that will lead to the proper value
of each parameter. Although a few of the steps may seem trivial at first,
they can become quite important when the network becomes complex.

Thévenin’s Theorem Procedure

Preliminary:

1. Remove that portion of the network where the Thévenin equivalent
circuit is found. In Fig. 9.25(a), this requires that the load resistor
RL be temporarily removed from the network.

2. Mark the terminals of the remaining two-terminal network. (The
importance of this step will become obvious as we progress
through some complex networks.)

RTh:

3. Calculate RTh by first setting all sources to zero (voltage sources
are replaced by short circuits, and current sources by open
circuits) and then finding the resultant resistance between the two
marked terminals. (If the internal resistance of the voltage and/or

FIG. 9.23

Thévenin equivalent circuit.
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R3

a

b

(a) (b)

E

a

IL

ETh

RTh

b

RLRL

IL

R1

R2

I

FIG. 9.25

Substituting the Thévenin equivalent circuit for a complex network.

R1

3 �

R2 6 �

b

E1 9 V RL

a

+

–

FIG. 9.26

Example 9.6.

R2 6 �

R1

3 �

E1 9 V

a

b

+

–

FIG. 9.27

Identifying the terminals of particular importance
when applying Thévenin’s theorem.

+ –
�

R2 6 �

(a) (b)

R1

3 �

RTh
R2

b b

a a

I�

R1

FIG. 9.28

Determining RTh for the network in Fig. 9.27.

current sources is included in the original network, it must remain
when the sources are set to zero.)

ETh:

4. Calculate ETh by first returning all sources to their original
position and finding the open-circuit voltage between the marked
terminals. (This step is invariably the one that causes most
confusion and errors. In all cases, keep in mind that it is the open-
circuit potential between the two terminals marked in step 2.)

Conclusion:

5. Draw the Thévenin equivalent circuit with the portion of the
circuit previously removed replaced between the terminals of the
equivalent circuit. This step is indicated by the placement of the
resistor RL between the terminals of the Thévenin equivalent
circuit as shown in Fig. 9.25(b).

EXAMPLE 9.6 Find the Thévenin equivalent circuit for the network in
the shaded area of the network in Fig. 9.26. Then find the current through
RL for values of 2 �, 10 �, and 100 �.

Solution:

Steps 1 and 2: These produce the network in Fig. 9.27. Note that the load
resistor RL has been removed and the two “holding” terminals have been
defined as a and b.

Steps 3: Replacing the voltage source E1 with a short-circuit equivalent
yields the network in Fig. 9.28(a), where

RTh � R1 � R2 �
13 � 2 16 � 2
3 � � 6 �

� 2 �
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R2 6 �9 VE1 ETh

+

–

a

b

R1

3 �

+

–

+

–

FIG. 9.29

Determining ETh for the network in Fig. 9.27.

+ –
ETh

E1 R2 6 �

R1

3 �

9 V

+

–

+

–

FIG. 9.30

Measuring ETh for the network in Fig. 9.27.

RL

a
RTh  =  2 �

ETh  =  6 V

b

IL

+

–

FIG. 9.31

Substituting the Thévenin equivalent circuit for the
network external to RL in Fig. 9.26.

R3 7 �

R2

2 �

R1 4 �

a

b

12 A
I  =

FIG. 9.32

Example 9.7.

R2

2 �

R1 4 �I12 A

a

b

FIG. 9.33

Establishing the terminals of particular interest for
the network in Fig. 9.32.

The importance of the two marked terminals now begins to surface.
They are the two terminals across which the Thévenin resistance is meas-
ured. It is no longer the total resistance as seen by the source, as deter-
mined in the majority of problems of Chapter 7. If some difficulty
develops when determining RTh with regard to whether the resistive ele-
ments are in series or parallel, consider recalling that the ohmmeter sends
out a trickle current into a resistive combination and senses the level of
the resulting voltage to establish the measured resistance level. In Fig.
9.28(b), the trickle current of the ohmmeter approaches the network
through terminal a, and when it reaches the junction of R1 and R2, it splits
as shown. The fact that the trickle current splits and then recombines at
the lower node reveals that the resistors are in parallel as far as the ohm-
meter reading is concerned. In essence, the path of the sensing current of
the ohmmeter has revealed how the resistors are connected to the two ter-
minals of interest and how the Thévenin resistance should be determined.
Remember this as you work through the various examples in this section.

Step 4: Replace the voltage source (Fig. 9.29). For this case, the open-
circuit voltage ETh is the same as the voltage drop across the 6 � resistor.
Applying the voltage divider rule,

It is particularly important to recognize that ETh is the open-circuit po-
tential between points a and b. Remember that an open circuit can have
any voltage across it, but the current must be zero. In fact, the current
through any element in series with the open circuit must be zero also. The
use of a voltmeter to measure ETh appears in Fig. 9.30. Note that it is
placed directly across the resistor R2 since ETh and are in parallel.

Step 5 (Fig. 9.31):

If Thévenin’s theorem were unavailable, each change in RL would re-
quire that the entire network in Fig. 9.26 be reexamined to find the new
value of RL.

EXAMPLE 9.7 Find the Thévenin equivalent circuit for the network in
the shaded area of the network in Fig. 9.32.

Solution:

Steps 1 and 2: See Fig. 9.33.

Step 3: See Fig. 9.34. The current source has been replaced with an
open-circuit equivalent, and the resistance determined between termi-
nals a and b.

In this case, an ohmmeter connected between terminals a and b
sends out a sensing current that flows directly through R1 and R2 (at the

                             IL �
ETh

RTh � RL

RL � 2 �:            IL �
6 V

2 � � 2 �
� 1.5 A

RL � 10 �:          IL �
6 V

2 � � 10 �
� 0.5 A

RL � 100 �:        IL �
6 V

2 � � 100 �
� 0.06 A

VR2

ETh �
R2E1

R2 � R1
�
16 � 2 19 V 2
6 � � 3 �

�
54 V

9
� 6 V
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R1 4 �

R2  =  2 �I

I  =  12 A

+

–

I  =  0 +

–

+ V2  =  0 V  – a

b

ETh

FIG. 9.35

Determining ETh for the network in Fig. 9.33.

R3 7 �

a

b

RTh  =  6 �

ETh  =  48 V
+

–

FIG. 9.36

Substituting the Thévenin equivalent circuit in the network
external to the resistor R3 in Fig. 9.32.

8 VE1R4 3 �R1 6 �

R2

4 �a

b

+

–
R3 2 �

FIG. 9.37

Example 9.8.

R1 6 �

R2

4 �

R3 2 �E1 8 V

a

b

–

+

FIG. 9.38

Identifying the terminals of particular interest for the network in Fig. 9.37.

same level). The result is that R1 and R2 are in series and the Thévenin re-
sistance is the sum of the two.

RTh � R1 � R2 � 4 � � 2 � � 6 �

Step 4: See Fig. 9.35. In this case, since an open circuit exists between
the two marked terminals, the current is zero between these terminals and
through the 2 � resistor. The voltage drop across R2 is, therefore,

V2 � I2R2 � (0)R2 � 0 V

and ETh � V1 � I1R1 � IR1 � (12 A)(4 �) � 48 V

Step 5: See Fig. 9.36.

R1 4 �

a

b

RTh

R2

2 �

FIG. 9.34

Determining RTh for the network in Fig. 9.33.

EXAMPLE 9.8 Find the Thévenin equivalent circuit for the network in
the shaded area of the network in Fig. 9.37. Note in this example that
there is no need for the section of the network to be preserved to be at the
“end” of the configuration.

Solution:

Steps 1 and 2: See Fig. 9.38.
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R2 4 �

ETh  R1 6 �

R3 2 �–

+

–

+
E1 8 V

FIG. 9.41

Network of Fig. 9.40 redrawn.

R4 3 �

RTh  =  2.4 �
a

b

ETh  =  4.8 V
–

+

FIG. 9.42

Substituting the Thévenin equivalent circuit for the
network external to the resistor R4 in Fig. 9.37.

R2

4 �

R1 6 � R2 4 �R1 6 �

a

b

RTh

“Short circuited”

R3 2 �

Circuit redrawn:

RTh

a

b

RT  =  0 � �� 2 �  =  0 �

FIG. 9.39

Determining RTh for the network in Fig. 9.38.

ETh  R1 6 �

R2

4 �

R3 2 �ETh E1 8 V
–

+

–

+

a

b +

–

FIG. 9.40

Determining ETh for the network in Fig. 9.38.

R1

6 � 12 �

4 �

R2

RLR3 R4

3 �

b aE 72 V
+

–

FIG. 9.43

Example 9.9.

Step 3: See Fig. 9.39. Steps 1 and 2 are relatively easy to apply, but
now we must be careful to “hold” onto the terminals a and b as the
Thévenin resistance and voltage are determined. In Fig. 9.39, all the
remaining elements turn out to be in parallel, and the network can be
redrawn as shown.

Step 4: See Fig. 9.40. In this case, the network can be redrawn as shown
in Fig. 9.41. Since the voltage is the same across parallel elements, the
voltage across the series resistors R1 and R2 is E1, or 8 V. Applying the
voltage divider rule,

ETh �
R1E1

R1 � R2
�
16 � 2 18 V 2
6 � � 4 �

�
48 V

10
� 4.8 V

RTh � R1 � R2 �
16 � 2 14 � 2
6 � � 4 �

�
24 �

10
� 2.4 �

Step 5: See Fig. 9.42.

The importance of marking the terminals should be obvious from Ex-
ample 9.8. Note that there is no requirement that the Thévenin voltage
have the same polarity as the equivalent circuit originally introduced.

EXAMPLE 9.9 Find the Thévenin equivalent circuit for the network in
the shaded area of the bridge network in Fig. 9.43.
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R1

3 �R1

6 �

R2

R3 R4

12 �

3 � 4 �

R2

R4

4 �

RTh

b a

R3

12 �6 �

(b)(a)

ab
RTh

c′

c

c,c′

FIG. 9.45

Solving for RTh for the network in Fig. 9.44.

V1 R1 6 �

R3 3 �

R2 12 �

R4 4 �

KVL
+

–
72 V

+

– +
V2

b a

ETh
–

+

E E
–

+

–

FIG. 9.46

Determining ETh for the network in Fig. 9.44.

RL

RTh  =  5 �

ETh  =  6 V

a

b

+

–

FIG. 9.47

Substituting the Thévenin equivalent circuit for the
network external to the resistor RL in Fig. 9.43.

R1

6 �

R2

12 �

4 �

R4R3

3 �

b a72 VE

+

–

FIG. 9.44

Identifying the terminals of particular interest for the
network in Fig. 9.43.

Solution:

Steps 1 and 2: See Fig. 9.44.

Step 3: See Fig. 9.45. In this case, the short-circuit replacement of the
voltage source E provides a direct connection between c and c� in Fig.
9.45(a), permitting a “folding” of the network around the horizontal line
of a-b to produce the configuration in Fig. 9.45(b).

 � 2 � � 3 � � 5 �
 � 6 � � 3 � � 4 � � 12 �

RTh � Ra�b � R1 � R3 � R2 � R4

Step 4: The circuit is redrawn in Fig. 9.46. The absence of a direct con-
nection between a and b results in a network with three parallel branches.
The voltages V1 and V2 can therefore be determined using the voltage di-
vider rule:

 V2 �
R2E

R2 � R4
�
112 � 2 172 V 2
12 � � 4 �

�
864 V

16
� 54 V

 V1 �
R1E

R1 � R3
�
16 � 2 172 V 2
6 � � 3 �

�
432 V

9
� 48 V

Assuming the polarity shown for ETh and applying Kirchhoff’s volt-
age law to the top loop in the clockwise direction results in

ΣA V � �ETh � V1 � V2 � 0

and ETh � V2 � V1 � 54 V � 48 V � 6 V

Step 5: See Fig. 9.47.
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R4

1.4 k�

R3 6 k� RLR1 0.8 k�

R2 4 k�

E2 + 10 V

E1 – 6 V

FIG. 9.48

Example 9.10.

R1 0.8 k�

R4

1.4 k�R2 4 k�

R3 6 k�

E1 6 V E2 10 V
+

–

–

+

a

b

FIG. 9.49

Identifying the terminals of particular interest for the
network in Fig. 9.48.

2.4 k�

R2 4 k�

R3 6 k�

R1 0.8 k�

RTh

a

b

R4

1.4 k�

FIG. 9.50

Determining RTh for the network in Fig. 9.49.

R3 6 k�

V4

1.4 k�

E1

0.8 k�
R2 4 k�R1

R4

6 V

I4  =  0

–

+

– +

V3

+

–
E�Th

+

–

FIG. 9.51

Determining the contribution to ETh from the source
E1 for the network in Fig. 9.49.

R2 4 k�

R3 6 k�

E2 10 V

I4  =  0

E�ThV3

R4

1.4 k�

V4+ –

+

–

+

–

R1 0.8 k�
+

–

FIG. 9.52

Determining the contribution to ETh from the source E2 for the network in
Fig. 9.49.

Thévenin’s theorem is not restricted to a single passive element, as
shown in the preceding examples, but can be applied across sources,
whole branches, portions of networks, or any circuit configuration as
shown in the following example. It is also possible that you may have to
use one of the methods previously described, such as mesh analysis or su-
perposition, to find the Thévenin equivalent circuit.

EXAMPLE 9.10 (Two sources) Find the Thévenin circuit for the net-
work within the shaded area of Fig. 9.48.

Solution:

Steps 1 and 2: See Fig. 9.49. The network is redrawn.

Step 3: See Fig. 9.50.

Step 4: Applying superposition, we will consider the effects of the volt-
age source E1 first. Note Fig. 9.51. The open circuit requires that V4 �
I4R4 � (0)R4 � 0 V, and

Applying the voltage divider rule,

For the source E2, the network in Fig. 9.52 results. Again, V4 � I4R4 �
(0)R4 � 0 V, and

and V3 �
R�T E2

R�T � R2
�
10.706 k� 2 110 V 2
0.706 k� � 4 k�

�
7.06 V

4.706
� 1.5 V

E�Th � V3 � 1.5 V

E�Th � V3

R�T � R1 � R3 � 0.8 k� � 6 k� � 0.706 k� 

V3 �
R�T E1

R�T
�
12.4 k� 2 16 V 2

2.4 k� � 0.8 k�
�

14.4 V

3.2
� 4.5 V

E�Th � V3 � 4.5 V

E�Th � V3

R�T � R2 � R3 � 4 k� � 6 k� � 2.4 k� 

 � 2 k�

 � 1.4 k� � 0.6 k�

 � 1.4 k� � 0.8 k� � 2.4 k�

 � 1.4 k� � 0.8 k� � 4 k� � 6 k�

RTh � R4 � R1 � R2 � R3
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4.500

20V

V
+ COM

4.500

20V

V
+ COM

4 �I 8 A R1

12 V

R3 3 �

E

R2

1 �

Voc = ETh = 4.5 V

1.875 �

Voc = ETh = 4.5 V

V = 0 V
RTh

4.5 VETh

I = 0 A

(a) (b)

FIG. 9.54

Measuring the Thévenin voltage with a voltmeter: (a) actual network; (b) Thévenin equivalent.

Since and have opposite polarities,

(polarity of E�Th)

Step 5: See Fig. 9.53.

Experimental Procedures

Now that the analytical procedure has been described in detail and a sense
for the Thévenin impedance and voltage established, it is time to investigate
how both quantities can be determined using an experimental procedure.

Even though the Thévenin resistance is usually the easiest to deter-
mine analytically, the Thévenin voltage is often the easiest to determine
experimentally, and therefore it will be examined first.

Measuring ETh The network of Fig. 9.54(a) has the equivalent
Thévenin circuit appearing in Fig. 9.54(b). The open-circuit Thévenin
voltage can be determined by simply placing a voltmeter on the output
terminals in Fig. 9.54(a) as shown. This is due to the fact that the open
circuit in Fig. 9.54(b) dictates that the current through and the voltage
across the Thévenin resistance must be zero. The result for Fig. 9.54(b)
is that

Voc � ETh � 4.5 V

In general, therefore,

the Thévenin voltage is determined by connecting a voltmeter to the
output terminals of the network. Be sure the internal resistance of the
voltmeter is significantly more than the expected level of RTh.

 � 3 V
 � 4.5 V � 1.5 V

 ETh � E�Th � E�Th

E�ThE�ThRTh

2 k�

RL3 VETh

+

–

FIG. 9.53

Substituting the Thévenin equivalent circuit for the
network external to the resistor RL in Fig. 9.48.

Measuring RTh

USING AN OHMMETER:

In Fig. 9.55, the sources in Fig. 9.54(a) have been set to zero, and an ohm-
meter has been applied to measure the Thévenin resistance. In Fig.
9.54(b), it is clear that if the Thévenin voltage is set to zero volts, the
ohmmeter will read the Thévenin resistance directly.
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1.875

200Ω

COM+

1.875

200Ω

COM+

(a) (b)

1.875 �

R = RTh = 1.875 �

RTh

ETh = 0 V4 �R1

R3 3 �

R2

1 �

R = RTh = 1.875 �

FIG. 9.55

Measuring RTh with an ohmmeter: (a) actual network; (b) Thévenin equivalent.

In general, therefore,

the Thévenin resistance can be measured by setting all the sources to
zero and measuring the resistance at the output terminals.

It is important to remember, however, that ohmmeters cannot be used on
live circuits, and you cannot set a voltage source by putting a short circuit
across it—it causes instant damage. The source must either be set to zero or
removed entirely and then replaced by a direct connection. For the current
source, the open-circuit condition must be clearly established; otherwise,
the measured resistance will be incorrect. For most situations, it is usually
best to remove the sources and replace them by the appropriate equivalent.

USING A POTENTIOMETER:

If we use a potentiometer to measure the Thévenin resistance, the sources
can be left as is. For this reason alone, this approach is one of the more
popular. In Fig. 9.56(a), a potentiometer has been connected across the
output terminals of the network to establish the condition appearing in
Fig. 9.56(b) for the Thévenin equivalent. If the resistance of the poten-
tiometer is now adjusted so that the voltage across the potentiometer is
one-half the measured Thévenin voltage, the Thévenin resistance must
match that of the potentiometer. Recall that for a series circuit, the ap-
plied voltage will divide equally across two equal series resistors.

If the potentiometer is then disconnected and the resistance measured
with an ohmmeter as shown in Fig. 9.56(c), the ohmmeter displays the
Thévenin resistance of the network. In general, therefore,

the Thévenin resistance can be measured by applying a potentiometer
to the output terminals and varying the resistance until the output
voltage is one-half the measured Thévenin voltage. The resistance of
the potentiometer is the Thévenin resistance for the network.

USING THE SHORT-CIRCUIT CURRENT:

The Thévenin resistance can also be determined by placing a short circuit
across the output terminals and finding the current through the short cir-
cuit. Since ammeters ideally have zero internal ohms between their termi-
nals, hooking up an ammeter as shown in Fig. 9.57(a) has the effect of both
hooking up a short circuit across the terminals and measuring the resulting
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2.250

20V

V
+ COM

2.250

20V

V
+ COM

(a) (b)

1.875 �

= RTh = 1.875 �

RTh

4.5 VETh RL
= 2.25 V

ETh
24 �I 8 A R1

12 V

R3 3 �

E

R2

1 �

ETh
2

1.875

200Ω

COM+

(c)

FIG. 9.56

Using a potentiometer to determine RTh: (a) actual network; (b) Thévenin equivalent; (c) measuring RTh.

2.400

20A

A
COM+

2.400

20A

A
COM+

4 �I 8 A R1

12 V

R3 3 �

E

R2

1 �

Isc

1.875 �

RTh

4.5 V

(a) (b)

ETh Isc =        = 2.4 A
ETh
RTh

FIG. 9.57

Determining RTh using the short-circuit current: (a) actual network; (b) Thévenin equivalent.
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FIG. 9.58

Edward L. Norton.
Courtesy of AT&T Archives.

American (Rockland, Maine; Summit, New Jersey)
1898–1983
Electrical Engineer, Scientist, Inventor
Department Head: Bell Laboratories
Fellow: Acoustical Society and Institute of Radio

Engineers

Although interested primarily in communications cir-
cuit theory and the transmission of data at high speeds
over telephone lines, Edward L. Norton is best re-
membered for development of the dual of Thévenin
equivalent circuit, currently referred to as Norton’s
equivalent circuit. In fact, Norton and his associates at
AT&T in the early 1920s are recognized as some of
the first to perform pioneering work applying
Thévenin’s equivalent circuit and who referred to this
concept simply as Thévenin’s theorem. In 1926, he
proposed the equivalent circuit using a current source
and parallel resistor to assist in the design of recording
instrumentation that was primarily current driven. He
began his telephone career in 1922 with the Western
Electric Company’s Engineering Department, which
later became Bell Laboratories. His areas of active re-
search included network theory, acoustical systems,
electromagnetic apparatus, and data transmission. A
graduate of MIT and Columbia University, he held
nineteen patents on his work.

RNIN

a

b

FIG. 9.59

Norton equivalent circuit.

current. The same ammeter was connected across the Thévenin equivalent
circuit in Fig. 9.57(b).

On a practical level, it is assumed, of course, that the internal resistance
of the ammeter is approximately zero ohms in comparison to the other re-
sistors of the network. It is also important to be sure that the resulting cur-
rent does not exceed the maximum current for the chosen ammeter scale.

In Fig. 9.57(b), since the short-circuit current is

the Thévenin resistance can be determined by

In general, therefore,

the Thévenin resistance can be determined by hooking up an
ammeter across the output terminals to measure the short-circuit
current and then using the open-circuit voltage to calculate the
Thévenin resistance in the following manner:

(9.1)

As a result, we have three ways to measure the Thévenin resistance of a
configuration. Because of the concern about setting the sources to zero in
the first procedure and the concern about current levels in the last, the
second method is often chosen.

9.4 NORTON’S THEOREM

In Section 8.3, we learned that every voltage source with a series internal
resistance has a current source equivalent. The current source equivalent
can be determined by Norton’s theorem (Fig. 9.58). It can also be found
through the conversions of Section 8.3.

The theorem states the following:

Any two-terminal linear bilateral dc network can be replaced by an
equivalent circuit consisting of a current source and a parallel
resistor, as shown in Fig. 9.59.

The discussion of Thévenin’s theorem with respect to the equivalent
circuit can also be applied to the Norton equivalent circuit. The steps
leading to the proper values of IN and RN are now listed.

Norton’s Theorem Procedure

Preliminary:

1. Remove that portion of the network across which the Norton
equivalent circuit is found.

2. Mark the terminals of the remaining two-terminal network.

RN:

3. Calculate RN by first setting all sources to zero (voltage sources are
replaced with short circuits, and current sources with open
circuits) and then finding the resultant resistance between the two

RTh �
Voc

Isc

RTh �
ETh

Isc

Isc �
ETh

RTh
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R2 6 �

R1

3 �

RL9 VE
+

–

a

b

FIG. 9.61

Example 9.11.

R1

3 �

R2 6 �9 V
+

–

a

b

E

FIG. 9.62

Identifying the terminals of particular interest for the
network in Fig. 9.61.

R2 6 �

R1

3 �

RN

a

b

FIG. 9.63

Determining RN for the network in Fig. 9.62.

V2 R2 6 �

R1

3 �

Short circuited

E 9 V

Short

+

–

+

–

a

b

I1 IN IN

IN

I2  =  0

FIG. 9.64

Determining IN for the network in Fig. 9.62.

RTh  =  RN

ETh

RTh
RN  =  RTh

ETh  =  IN RN

+

–
IN

FIG. 9.60

Converting between Thévenin and Norton equivalent circuits.

marked terminals. (If the internal resistance of the voltage and/or
current sources is included in the original network, it must remain
when the sources are set to zero.) Since RN � RTh , the procedure
and value obtained using the approach described for Thévenin’s
theorem will determine the proper value of RN.

IN:

4. Calculate IN by first returning all sources to their original position
and then finding the short-circuit current between the marked
terminals. It is the same current that would be measured by an
ammeter placed between the marked terminals.

Conclusion:

5. Draw the Norton equivalent circuit with the portion of the circuit
previously removed replaced between the terminals of the
equivalent circuit.

The Norton and Thévenin equivalent circuits can also be found from
each other by using the source transformation discussed earlier in this
chapter and reproduced in Fig. 9.60.

EXAMPLE 9.11 Find the Norton equivalent circuit for the network in
the shaded area in Fig. 9.61.

Solution:

Steps 1 and 2: See Fig. 9.62.

Step 3: See Fig. 9.63, and

Step 4: See Fig. 9.64, which clearly indicates that the short-circuit con-
nection between terminals a and b is in parallel with R2 and eliminates its
effect. IN is therefore the same as through R1, and the full battery voltage
appears across R1 since

V2 � I2R2 � (0)6 � � 0 V

Therefore,

Step 5: See Fig. 9.65. This circuit is the same as the first one considered
in the development of Thévenin’s theorem. A simple conversion indicates
that the Thévenin circuits are, in fact, the same (Fig. 9.66).

IN �
E

R1
�

9 V

3 �
� 3 A

RN � R1 � R2 � 3 � � 6 � �
13 � 2 16 � 2
3 � � 6 �

�
18 �

9
� 2 �
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RTh  =  RN  =  2 �

IN RN  =  2 �

3 A

a

b

ETh  =  IN RN  =  (3 A)(2 �)  =  6 V

a

b

+

–

FIG. 9.66

Converting the Norton equivalent circuit in Fig. 9.65 to a Thévenin 
equivalent circuit.

RLRN  =  2 �IN =  3 A

a

b

FIG. 9.65

Substituting the Norton equivalent circuit for the
network external to the resistor RL in Fig. 9.61.

R1

5 �

10 A

a

b

RL 9 �R2 4 �

I

FIG. 9.67

Example 9.12.

R2 4 �

R1

5 �

10 A

a

b

I

R2 4 �

R1

5 �
a

b

RN

FIG. 9.69

Determining RN for the network in
Fig. 9.68.

9 � RL 9 �IN 5.56 A

a

b

RN

FIG. 9.71

Substituting the Norton equivalent circuit for the
network external to the resistor RL in Fig. 9.67.

10 A
R2 4 �

R1

5 �
a

b

IN
R1 5 �

b a

IR2 4 �

I

IN

10 A

FIG. 9.70

Determining IN for the network in Fig. 9.68.

EXAMPLE 9.12 Find the Norton equivalent circuit for the network ex-
ternal to the 9 � resistor in Fig. 9.67.

Solution:

Steps 1 and 2: See Fig. 9.68.

Step 3: See Fig. 9.69, and

RN � R1 � R2 � 5 � � 4 � � 9 �

Step 4: As shown in Fig. 9.70, the Norton current is the same as the cur-
rent through the 4 � resistor. Applying the current divider rule,

Step 5: See Fig. 9.71.

IN �
R1I

R1 � R2
�
15 � 2 110 A 2
5 � � 4 �

�
50 A

9
� 5.56 A

FIG. 9.68

Identifying the terminals of
particular interest for the network in

Fig. 9.67.
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IN 6.25 A
R3 9 �

RN  =  2.4 �

E2 12 V

R4 10 �

a

b

+

–

FIG. 9.77

Substituting the Norton equivalent circuit for the network to the left of
terminals a-b in Fig. 9.72.

R3 9 �

R4 10 �R2 6 �
R1 4 �

E1 7 V

I 8 A

E2 12 V

b

a

+

– +

–

FIG. 9.72

Example 9.13.

R1 4 �

R2 6 �I 8 A

I �N

a

b

I �N I �N

I �N

Short circuited

FIG. 9.76

Determining the contribution to IN from the current
source I.

R1 4 �
R2 6 �

E1 7 V

I 8 A

a

b

+

–

FIG. 9.73

Identifying the terminals of particular interest for the
network in Fig. 9.72.

R1 4 �

R2 6 �

a

b

RN

FIG. 9.74

Determining RN for the network in Fig. 9.73.

R2 6 �
R1 4 �

Short circuited

E1 7 V

a

b

I�N

+

–

I�N

I�N

FIG. 9.75

Determining the contribution to IN from the voltage
source E1.

Solution:

Steps 1 and 2: See Fig. 9.73.

Step 3: See Fig. 9.74, and

Step 4: (Using superposition) For the 7 V battery (Fig. 9.75),

For the 8 A source (Fig. 9.76), we find that both R1 and R2 have been
“short circuited” by the direct connection between a and b, and

The result is

Step 5: See Fig. 9.77.

IN � I�N � I�N � 8 A � 1.75 A � 6.25 A

I�N � I � 8 A

I�N �
E1

R1
�

7 V

4 �
� 1.75 A

RN � R1 � R2 � 4 � � 6 � �
14 � 2 16 � 2
4 � � 6 �

�
24 �

10
� 2.4 �

Experimental Procedure

The Norton current is measured in the same way as described for the
short-circuit current (Isc) for the Thévenin network. Since the Norton and
Thévenin resistances are the same, the same procedures can be followed
as described for the Thévenin network.

EXAMPLE 9.13 (Two sources) Find the Norton equivalent circuit for
the portion of the network to the left of a-b in Fig. 9.72.
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RL = RTh

IRTh

ETh

+

–

FIG. 9.78

Defining the conditions for maximum power to a
load using the Thévenin equivalent circuit.

RL

IL

RTh

ETh

+

–

9 �

60 V VL

PL

+

–

FIG. 9.79

Thévenin equivalent network to be used to validate
the maximum power transfer theorem.

9.5 MAXIMUM POWER TRANSFER THEOREM

When designing a circuit, it is often important to be able to answer one
of the following questions:

What load should be applied to a system to ensure that the load is
receiving maximum power from the system?

and, conversely:

For a particular load, what conditions should be imposed on the
source to ensure that it will deliver the maximum power available?

Even if a load cannot be set at the value that would result in maximum
power transfer, it is often helpful to have some idea of the value that will
draw maximum power so that you can compare it to the load at hand. For
instance, if a design calls for a load of 100 �, to ensure that the load re-
ceives maximum power, using a resistor of 1 � or 1 k� results in a power
transfer that is much less than the maximum possible. However, using a
load of 82 � or 120 � probably results in a fairly good level of power
transfer.

Fortunately, the process of finding the load that will receive maximum
power from a particular system is quite straightforward due to the
maximum power transfer theorem, which states the following:

A load will receive maximum power from a network when its
resistance is exactly equal to the Thévenin resistance of the network
applied to the load. That is,

(9.2)

In other words, for the Thévenin equivalent circuit in Fig. 9.78, when the
load is set equal to the Thévenin resistance, the load will receive maxi-
mum power from the network.

Using Fig. 9.78 with RL � RTh, the maximum power delivered to the
load can be determined by first finding the current:

Then substitute into the power equation:

and (9.3)

To demonstrate that maximum power is indeed transferred to the load un-
der the conditions defined above, consider the Thévenin equivalent cir-
cuit in Fig. 9.79.

Before getting into detail, however, if you were to guess what value
of RL would result in maximum power transfer to RL, you may think that
the smaller the value of RL , the better, because the current reaches a max-
imum when it is squared in the power equation. The problem is, how-
ever, that in the equation the load resistance is a multiplier.
As it gets smaller, it forms a smaller product. Then again, you may sug-
gest larger values of RL, because the output voltage increases and power
is determined by This time, however, the load resistancePL � V 2

L>RL.

PL � I 2
LRL,

PLmax
�

E 2
Th

4RTh

PL � I 2
L RL � a ETh

2RTh

b 21RTh 2 �
E 2

ThRTh

4R 2
Th

IL �
ETh

RTh � RL

�
ETh

RTh � RTh

�
ETh

2RTh

RL � RTh
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TABLE 9.1

RL (�) PL (W) IL (A) VL (V)

0.1 4.35 6.60 0.66
0.2 8.51 6.52 1.30
0.5 19.94 6.32 3.16
1 36.00 6.00 6.00
2 59.50 5.46 10.91
3 75.00 5.00 15.00
4 85.21 4.62 18.46
5 91.84 4.29 21.43
6 96.00 4.00 24.00
7 98.44 Increase 3.75 Decrease 26.25 Increase
8 99.65 3.53 28.23
9 (RTh) 100.00 (Maximum) 3.33 (Imax/2) 30.00 (ETh /2)

10 99.72 3.16 31.58
11 99.00 3.00 33.00
12 97.96 2.86 34.29
13 96.69 2.73 35.46
14 95.27 2.61 36.52
15 93.75 2.50 37.50
16 92.16 2.40 38.40
17 90.53 2.31 39.23
18 88.89 2.22 40.00
19 87.24 2.14 40.71
20 85.61 2.07 41.38
25 77.86 1.77 44.12
30 71.00 1.54 46.15
40 59.98 1.22 48.98

100 30.30 0.55 55.05
500 6.95 Decrease 0.12 Decrease 58.94 Increase

1000 3.54 0.06 59.47

is in the denominator of the equation and causes the resulting power to
decrease. A balance must obviously be made between the load resistance
and the resulting current or voltage. The following discussion shows that

maximum power transfer occurs when the load voltage and current
are one-half of their maximum possible values.

For the circuit in Fig. 9.79, the current through the load is deter-
mined by

The voltage is determined by

and the power by

If we tabulate the three quantities versus a range of values for RL from
0.1 � to 30 �, we obtain the results appearing in Table 9.1. Note in par-
ticular that when RL is equal to the Thévenin resistance of 9 �, the power
has a maximum value of 100 W, the current is 3.33 A or one-half its max-

PL � I 2
L RL � a 60 V

9 � � RL

b 21RL 2 �
3600RL

19 � � RL 2 2

VL �
RLETh

RL � RTh

�
RL160 V 2
RL � RTh

IL �
ETh

RTh � RL

�
60 V

9 � � RL
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PL

PL (W)

0 5 9 10 15 20 25 30 RL (�)

10

20

30

40

50

60

70

80

90

RL  =  RTh  =  9 �

PLmax
  =  100

RTh

FIG. 9.80

PL versus RL for the network in Fig. 9.79.

imum value of 6.60 A (as would result with a short circuit across the out-
put terminals), and the voltage across the load is 30 V or one-half its max-
imum value of 60 V (as would result with an open circuit across its output
terminals). As you can see, there is no question that maximum power is
transferred to the load when the load equals the Thévenin value.

The power to the load versus the range of resistor values is provided in
Fig. 9.80. Note in particular that for values of load resistance less than the
Thévenin value, the change is dramatic as it approaches the peak value.
However, for values greater than the Thévenin value, the drop is a great
deal more gradual. This is important because it tells you the following:

If the load applied is less than the Thévenin resistance, the power to
the load will drop off rapidly as it gets smaller. However, if the applied
load is greater than the Thévenin resistance, the power to the load
will not drop off as rapidly as it increases.

For instance, the power to the load is at least 90 W for the range of
about 4.5 � to 9 � below the peak value, but it is at least the same level
for a range of about 9 � to 18 � above the peak value. The range below
the peak is 4.5 �, while the range above the peak is almost twice as
much at 9 �. As mentioned above, if maximum transfer conditions can-
not be established, at least we now know from Fig. 9.80 that any resis-
tance relatively close to the Thévenin value results in a strong transfer of
power. More distant values such as 1 � or 100 � result in much lower
levels.

It is particularly interesting to plot the power to the load versus load
resistance using a log scale, as shown in Fig. 9.81. Logarithms will be
discussed in detail in Chapter 21, but for now notice that the spacing be-
tween values of RL is not linear, but the distance between powers of ten
(such as 0.1 and 1, 1 and 10, and 10 and 100) are all equal. The advantage

boy30444_ch09.qxd  3/22/06  12:52 PM  Page 369



370 ⏐⏐⏐ NETWORK THEOREMS
Th

Log scale

P (W)

100

90

80

70

60

50

40

30

20

10

0.1 0.5 1 2 3 4 5678 10 20 30 40 100 1000 RL (�)

RL = RTh = 9 �

0.2

PL

PLmax

Linear
scale

FIG. 9.81

PL versus RL for the network in Fig. 9.79.

of the log scale is that a wide resistance range can be plotted on a rela-
tively small graph.

Note in Fig. 9.81 that a smooth, bell-shaped curve results that is sym-
metrical about the Thévenin resistance of 9 �. At 0.1 �, the power has
dropped to about the same level as that at 1000 �, and at 1 � and 100 �,
the power has dropped to the neighborhood of 30 W.

Although all of the above discussion centers on the power to the load,
it is important to remember the following:

The total power delivered by a supply such as ETh is absorbed by both
the Thévenin equivalent resistance and the load resistance. Any
power delivered by the source that does not get to the load is lost to
the Thévenin resistance.

Under maximum power conditions, only half the power delivered by the
source gets to the load. Now, that sounds disastrous, but remember that
we are starting out with a fixed Thévenin voltage and resistance, and the
above simply tells us that we must make the two resistance levels equal
if we want maximum power to the load. On an efficiency basis, we are
working at only a 50% level, but we are content because we are getting
maximum power out of our system.

The dc operating efficiency is defined as the ratio of the power deliv-
ered to the load (PL) to the power delivered by the source (Ps). That is,

(9.4)

For the situation where RL � RTh ,

 �
RTh

2RTh

	 100% �
1

2
	 100% � 50%

 h% �
I 2

L RL

IL
2RT

	 100% �
RL

RT

	 100% �
RTh

RTh � RTh

	 100%

h% �
PL

Ps

	 100%
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PE

PTh

PL

RL 100 �
ETh 60 V

RTh = 9 �

Power flow

FIG. 9.83

Examining a circuit with high efficiency but a
relatively low level of power to the load.

100

75

50

25

0 20 40 60 80 100 RL (�)

RL  =  RTh

%

10

η

≅  kRL  	  100%%η

Approaches 100%

FIG. 9.82

Efficiency of operation versus increasing values of RL.

For the circuit in Fig. 9.79, if we plot the efficiency of operation ver-
sus load resistance, we obtain the plot in Fig. 9.82, which clearly shows
that the efficiency continues to rise to a 100% level as RL gets larger. Note
in particular that the efficiency is 50% when RL � RTh .

To ensure that you completely understand the effect of the maximum
power transfer theorem and the efficiency criteria, consider the circuit in
Fig. 9.83 where the load resistance is set at 100 � and the power to the
Thévenin resistance and to the load are calculated as follows:

with

and

The results clearly show that most of the power supplied by the bat-
tery is getting to the load—a desirable attribute on an efficiency basis.
However, the power getting to the load is only 30.3 W compared to the
100 W obtained under maximum power conditions. In general, therefore,
the following guidelines apply:

If efficiency is the overriding factor, then the load should be much
larger than the internal resistance of the supply. If maximum power
transfer is desired and efficiency less of a concern, then the
conditions dictated by the maximum power transfer theorem should
be applied.

A relatively low efficiency of 50% can be tolerated in situations where
power levels are relatively low, such as in a wide variety of electronic sys-
tems, where maximum power transfer for the given system is usually
more important. However, when large power levels are involved, such as
at generating plants, efficiencies of 50% cannot be tolerated. In fact, a
great deal of expense and research is dedicated to raising power generat-
ing and transmission efficiencies a few percentage points. Raising an ef-
ficiency level of a 10 MkW power plant from 94% to 95% (a 1% increase)
can save 0.1 MkW, or 100 million watts, of power—an enormous saving.

 PL � I 2
L RL � 1550.5 mA 2 21100 � 2  � 30.3 W

 PRTh
� I 2

L RTh � 1550.5 mA 2 219 � 2  � 2.73 W

IL �
ETh

RTh � RL

�
60 V

9 � � 100 �
�

60 V

109 �
� 550.5 mA
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RL

2.5 �Rint

–

+
E

RL

0.5 �Rint

E

RL

Rint

E

(a)  dc generator (b)  Battery (c)  Laboratory supply

+

–

+

–

120 V

20 �

12 V 0–40 V

FIG. 9.85

Example 9.14.

In all of the above discussions, the effect of changing the load was dis-
cussed for a fixed Thévenin resistance. Looking at the situation from a
different viewpoint,

if the load resistance is fixed and does not match the applied
Thévenin equivalent resistance, then some effort should be made (if
possible) to redesign the system so that the Thévenin equivalent
resistance is closer to the fixed applied load.

In other words, if a designer faces a situation where the load resistance is
fixed, he/she should investigate whether the supply section should be re-
placed or redesigned to create a closer match of resistance levels to pro-
duce higher levels of power to the load.

For the Norton equivalent circuit in Fig. 9.84, maximum power will
be delivered to the load when

(9.5)

This result [Eq. (9.5)] will be used to its fullest advantage in the analysis
of transistor networks, where the most frequently applied transistor cir-
cuit model uses a current source rather than a voltage source.

For the Norton circuit in Fig. 9.84,

(W) (9.6)

EXAMPLE 9.14 A dc generator, battery, and laboratory supply are con-
nected to resistive load RL in Fig. 9.85.

a. For each, determine the value of RL for maximum power transfer to RL.
b. Under maximum power conditions, what are the current level and

the power to the load for each configuration?
c. What is the efficiency of operation for each supply in part (b)?
d. If a load of 1 k� were applied to the laboratory supply, what would

the power delivered to the load be? Compare your answer to the level
of part (b). What is the level of efficiency?

e. For each supply, determine the value of RL for 75% efficiency.

PLmax
�

I 2
NRN

4
 

RL � RN
RL  =  RN

I

RNIN

FIG. 9.84

Defining the conditions for maximum power to a
load using the Norton equivalent circuit.

Solutions:

a. For the dc generator,

RL � RTh � Rint � 2.5 �
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For the 12 V car battery,

RL � RTh � Rint � 0.05 �

For the dc laboratory supply,

RL � RTh � Rint � 20 �

b. For the dc generator,

For the 12 V car battery,

For the dc laboratory supply,

c. They are all operating under a 50% efficiency level because RL � RTh .
d. The power to the load is determined as follows:

and

The power level is significantly less than the 20 W achieved in part
(b). The efficiency level is

which is markedly higher than achieved under maximum power
conditions—albeit at the expense of the power level.

e. For the dc generator,

(h in decimal form)

and

h(RTh � RL) � RL

hRTh � hRL � RL

RL(1 � h) � hRTh

and (9.7)

For the battery,

RL �
0.7510.05 � 2

1 � 0.75
� 0.15 �

RL �
0.7512.5 � 2

1 � 0.75
� 7.5 �

RL �
hRTh

1 � h

h �
RL

RTh � RL

h �
Po

Ps

�
RL

RTh � RL

�
1.54 W

1.57 W
	 100% � 98.09%

h% �
PL

Ps

	 100% �
1.54 W

EIs

	 100% �
1.54 W

140 V 2 139.22 mA 2 	100%

PL � I 2
L RL � 139.22 mA 2 211000 � 2 � 1.54 W

IL �
E

Rint � RL

�
40 V

20 � � 1000 �
�

40 V

1020 �
� 39.22 mA

PLmax
�

E2
Th

4RTh

�
E2

4Rint
�
140 V 2 2
4120 � 2 � 20 W

PLmax
�

E2
Th

4RTh

�
E2

4Rint
�
112 V 2 2

410.05 � 2 � 720 W

PLmax
�

E2
Th

4RTh

�
E2

4Rint
�
1120 V 2 2
412.5 � 2 � 1.44 kW
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dc supply

RL 16 �48 V

36 �

Rs

E

FIG. 9.87

dc supply with a fixed 16 � load (Example 9.16).

For the laboratory supply,

EXAMPLE 9.15 The analysis of a transistor network resulted in the re-
duced equivalent in Fig. 9.86.

a. Find the load resistance that will result in maximum power transfer
to the load, and find the maximum power delivered.

b. If the load were changed to 68 k�, would you expect a fairly high level
of power transfer to the load based on the results of part (a)? What
would the new power level be? Is your initial assumption verified?

c. If the load were changed to 8.2 k�, would you expect a fairly high
level of power transfer to the load based on the results of part (a)? What
would the new power level be? Is your initial assumption verified?

Solutions:

a. Replacing the current source by an open-circuit equivalent results in

RTh � Rs � 40 k�

Restoring the current source and finding the open-circuit voltage at
the output terminals results in

ETh � Voc � IRs � (10 mA)(40 k�) � 400 V

For maximum power transfer to the load,

RL � RTh � 40 k�

with a maximum power level of

b. Yes, because the 68 k� load is greater (note Fig. 9.80) than the
40 k� load, but relatively close in magnitude.

Yes, the power level of 0.93 W compared to the 1 W level of part (a)
verifies the assumption.

c. No, 8.2 k� is quite a bit less (note Fig. 9.80) than the 40 k� value.

Yes, the power level of 0.57 W compared to the 1 W level of part (a)
verifies the assumption.

EXAMPLE 9.16 In Fig. 9.87, a fixed load of 16 � is applied to a 48 V
supply with an internal resistance of 36 �.

 PL � I 2
L RL � 18.3 mA 2 218.2 k� 2  � 0.57 W

 IL �
ETh

RTh � RL

�
400 V

40 k� � 8.2 k�
�

400 V

48.2 k�
 � 8.3 mA

 PL � I 2
L RL � 13.7 mA 2 2168 k� � 0.93 W

 IL �
ETh

RTh � RL

�
400 V

40 k� � 68 k�
�

400

108 k�
 � 3.7 mA

PLmax
�

E 2
Th

4RTh

�
1400 V 2 2
4140 k� 2 � 1 W

RL �
0.75120 � 2
1 � 0.75

� 60 �

I 10 mA Rs 40 k� RL

FIG. 9.86

Example 9.15.
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a. For the conditions in Fig. 9.87, what is the power delivered to the
load and lost to the internal resistance of the supply?

b. If the designer has some control over the internal resistance level of
the supply, what value should he/she make it for maximum power to
the load? What is the maximum power to the load? How does it com-
pare to the level obtained in part (a)?

c. Without making a single calculation, if the designer could change
the internal resistance to 22 � or 8.2 �, which value would result in
more power to the load? Verify your conclusion by calculating the
power to the load for each value.

Solutions:

a.

b. Be careful here. The quick response is to make the source resistance
Rs equal to the load resistance to satisfy the criteria of the maximum
power transfer theorem. However, this is a totally different type of
problem from what was examined earlier in this section. If the load
is fixed, the smaller the source resistance Rs, the more applied volt-
age will reach the load and the less will be lost in the internal series
resistor. In fact, the source resistance should be made as small as
possible. If zero ohms were possible for Rs, the voltage across the
load would be the full supply voltage, and the power delivered to the
load would equal

which is more than 10 times the value with a source resistance of
36 �.

c. Again, forget the impact in Fig. 9.80: The smaller the source resis-
tance, the greater the power to the fixed 16 � load. Therefore, the
8.2 � resistance level results in a higher power transfer to the load
than the 22 � resistor.

For Rs � 8.2 �:

and

For Rs � 22 �:

and

EXAMPLE 9.17 Given the network in Fig. 9.88, find the value of RL for
maximum power to the load, and find the maximum power to the load.

Solution: The Thévenin resistance is determined from Fig. 9.89.

RTh � R1 � R2 � R3 � 3 � � 10 � � 2 � � 15 �

PL � I 2
L RL � 11.263 A 2 2116 � 2  � 25.52 W

IL �
E

Rs � RL

�
48 V

22 � � 16 �
�

48 V

38 �
� 1.263 A

 PL � I 2
L RL � 11.983 A 2 2116 � 2  � 62.92 W

 IL �
E

Rs � RL

�
48 V

8.2 � � 16 �
�

48 V

24.2 �
� 1.983 A

PL �
V 2

L

RL

�
148 V 2 2
16 �

� 144 W

PL � I 2
L RL � 1923.1 mA 2 2116 � 2 � 13.63 W

PRs
� I 2

L Rs � 1923.1 mA 2 2136 � 2 � 30.68 W

IL �
E

Rs � RL

�
48 V

36 � � 16 �
�

48 V

52 �
� 923.1 mA

R2 10 �

R1

3 �

6 AI RL

E1

68 V

R3

2 �

+ –

FIG. 9.88

Example 9.17.

R2 10 �

R1

3 �

R3

2 �

RTh

FIG. 9.89

Determining RTh for the network external to resistor
RL in Fig. 9.88.
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R1

E1

R2

E2

R3

E3

RL

Req

Eeq

RL

+

–

+

–

+

–

+

–

FIG. 9.91

Demonstrating the effect of applying Millman’s theorem.

I1 E1G1 G1 I2 E2G2 I3G2 E3G3 G3 RL

( )E3
R3

( )E2
R2

( )E1
R1

FIG. 9.92

Converting all the sources in Fig. 9.91 to current sources.

V2 R2  =  10 �

E1

68 V
R1  =  3 �

I  =  0

I  =  6 A
I  =  0

R3  =  2 �
+  V3  =  0 V  –

ETh

–

+

–  V1  =  0 V  +

–

+
6 A

I  =

6 A

+ –

FIG. 9.90

Determining ETh for the network external to resistor
RL in Fig. 9.88.

so that RL � RTh � 15 �

The Thévenin voltage is determined using Fig. 9.90, where

V1 � V3 � 0 V and V2 � I2R2 � IR2 � (6 A)(10 �) � 60 V

Applying Kirchhoff’s voltage law:

�V2 � E � ETh � 0

and ETh � V2 � E � 60 V � 68 V � 128 V

with the maximum power equal to

9.6 MILLMAN’S THEOREM

Through the application of Millman’s theorem, any number of parallel
voltage sources can be reduced to one. In Fig. 9.91, for example, the three
voltage sources can be reduced to one. This permits finding the current
through or voltage across RL without having to apply a method such as
mesh analysis, nodal analysis, superposition, and so on. The theorem can
best be described by applying it to the network in Fig. 9.91. Basically,
three steps are included in its application.

PLmax
�

E2
Th

4RTh

�
1128 V 2 2
4115 k� 2 � 273.07 W

Step 1: Convert all voltage sources to current sources as outlined in Sec-
tion 8.3. This is performed in Fig. 9.92 for the network in Fig. 9.91.
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GTIT RL

FIG. 9.93

Reducing all the current sources in Fig. 9.92 to a
single current source.

Req
1

GT

Eeq
IT
GT

+

–

RL

FIG. 9.94

Converting the current source in Fig. 9.93 to a
voltage source.

Step 2: Combine parallel current sources as described in Section 8.4. The
resulting network is shown in Fig. 9.93, where

IT � I1 � I2 � I3 and GT � G1 � G2 � G3

Step 3: Convert the resulting current source to a voltage source, and the
desired single-source network is obtained, as shown in Fig. 9.94.

In general, Millman’s theorem states that for any number of parallel
voltage sources,

or (9.8)

The plus-and-minus signs appear in Eq. (9.8) to include those cases
where the sources may not be supplying energy in the same direction.
(Note Example 9.18.)

The equivalent resistance is

(9.9)

In terms of the resistance values,

(9.10)

and (9.11)

Because of the relatively few direct steps required, you may find it
easier to apply each step rather than memorizing and employing Eqs.
(9.8) through (9.11).

EXAMPLE 9.18 Using Millman’s theorem, find the current through
and voltage across the resistor RL in Fig. 9.95.

Solution: By Eq. (9.10),

The minus sign is used for E2/R2 because that supply has the opposite po-
larity of the other two. The chosen reference direction is therefore that of
E1 and E3. The total conductance is unaffected by the direction, and

Eeq �

�
E1

R1
�

E2

R2
�

E3

R3

1

R1
�

1

R2
�

1

R3

Req �
1

1

R1
�

1

R2
�

1

R3
� p �

1

RN

Eeq �


 
E1

R1
  
  

E2

R2
  
  

E3

R3
 
 p 
 

EN

RN

1

R1
�

1

R2
�

1

R3
� p �

1

RN

Req �
1

GT

�
1

G1 � G2 � G3 � p � GN

Eeq �

 E1G1 
 E2G2 
 E3G3 
 p   
 ENGN

G1 � G2 � G3 � p � GN

Eeq �
IT

GT

�

 I1 
 I2 
 I3 
 p   
 IN

G1 � G2 � G3 � p � GN

R1 5 � R2 4 � R3 2 �

E1
10 V

E2
16 V

E3
8 V

RL 3 �

IL

VL

+

–
+

–

+

–+

–

FIG. 9.95

Example 9.18.
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R1 1 � R2 6 �

E1 5 V E2 10 V

R3 2 �
+

–

+

–

FIG. 9.97

Example 9.19.

I1

R1

5 A

1 � R2 6 �

I2
5
3

R3 2 �

A

FIG. 9.98

Converting the sources in Fig. 9.97 to 
current sources.

IT
20
3

7
6

R3 2 �SA GT

FIG. 9.99

Reducing the current sources in Fig. 9.98 to a 
single source.

R3 2 �

6
7

Req �

Eeq
40
7 V

+

–

FIG. 9.100

Converting the current source in
Fig. 9.99 to a voltage source.

Req 1.05 �

Eeq

RL 3 � VL
–

+

2.11 V

IL

+

–

FIG. 9.96

The result of applying Millman’s theorem to the
network in Fig. 9.95.

with

The resultant source is shown in Fig. 9.96, and

with VL � ILRL � (0.52 A)(3 �) � 1.56 V

EXAMPLE 9.19 Let us now consider the type of problem encountered
in the introduction to mesh and nodal analysis in Chapter 8. Mesh analy-
sis was applied to the network of Fig. 9.97 (Example 8.12). Let us now
use Millman’s theorem to find the current through the 2 � resistor and
compare the results.

Solutions:

a. Let us first apply each step and, in the (b) solution, Eq. (9.10). Con-
verting sources yields Fig. 9.98. Combining sources and parallel
conductance branches (Fig. 9.99) yields

Converting the current source to a voltage source (Fig. 9.100), we
obtain

and Req �
1

GT

�
1

7

6
 S

�
6
7

 �

Eeq �
IT

GT

�

20

3
 A

7

6
 S

�
16 2 120 2
13 2 17 2  V �

40
7

 V

 GT � G1 � G2 � 1 S �
1

6 
 S �

6

6 
 S �

1

6 
 S �

7

6
 S

 IT � I1 � I2 � 5 A �
5

3
 A �

15

3
  A �

5

3
 A �

20

3
 A

IL �
2.11 V

1.05 � � 3 �
�

2.11 V

4.05 �
� 0.52 A

Req �
1

1

5 �
�

1

4 �
�

1

2 �

�
1

0.95 S
� 1.05 �

 �
2 A

0.95 S
� 2.11 V

 Eeq �

�
10 V

5 �
�

16 V

4 �
�

8 V

2 �

1

5 �
�

1

4 �
�

1

2 �

�
2 A � 4 A � 4 A

0.2 S � 0.25 S � 0.5 S
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R1

I2

R2

I3

R3

I1

Req

Ieq

RL RL

FIG. 9.101

The dual effect of Millman’s theorem.

so that

which agrees with the result obtained in Example 8.18.

b. Let us now simply apply the proper equation, Eq. (9.10):

and

which are the same values obtained above.

The dual of Millman’s theorem (Fig. 9.91) appears in Fig. 9.101. It can
be shown that Ieq and Req, as in Fig. 9.101, are given by

(9.12)

and (9.13)

The derivation appears as a problem at the end of the chapter.

Req � R1 � R2 � R3

Ieq �

 I1R1 
 I2R2 
 I3R3

R1 � R2 � R3

Req �
1

1

1 �
�

1

6 �

�
1

6

6 �
�

1

6 �

�
1

7

6
 S

�
6
7

 �

Eeq �

�
5 V

1 �
�

10 V

6 �

1

1 �
�

1

6 �

�

30 V

6 �
�

10 V

6 �

6

6 �
�

1

6 �

�
40
7

 V

I2 � �
Eeq

Req � R3
�

40

7
 V

6

7
 � � 2 � 

�

40

7
 V

6

7
 � �

14

7
 � 

�
40 V

20 �
� 2 A

9.7 SUBSTITUTION THEOREM

The substitution theorem states the following:

If the voltage across and the current through any branch of a dc
bilateral network are known, this branch can be replaced by any
combination of elements that will maintain the same voltage across
and current through the chosen branch.

More simply, the theorem states that for branch equivalence, the termi-
nal voltage and current must be the same. Consider the circuit in Fig. 9.102,

R2 4 �

R1

6 �

a

b

3 A

E 30  V
+

–
12 V

+

–

FIG. 9.102

Demonstrating the effect of the substitution theorem.
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R2

R3a

b

E V

–

+

R1

R4 R5

R3

b

E′  =  V R5R4

a

+

–

+

–

FIG. 9.104

Demonstrating the effect of knowing a voltage at some point in a complex network.

2 A 12 � 12 V

b

3 A
a

–

+

a

b
–

+

2 �

 6 V

3 A

12 V

a

b
–

+

3 A 12 V

a

b

12 V

–

+
3 A

+

–
+

–

FIG. 9.103

Equivalent branches for the branch a-b in Fig. 9.102.

in which the voltage across and current through the branch a-b are deter-
mined. Through the use of the substitution theorem, a number of equiva-
lent a-a� branches are shown in Fig. 9.103.

Note that for each equivalent, the terminal voltage and current are
the same. Also consider that the response of the remainder of the cir-
cuit in Fig. 9.102 is unchanged by substituting any one of the equiva-
lent branches. As demonstrated by the single-source equivalents in
Fig. 9.103, a known potential difference and current in a network can
be replaced by an ideal voltage source and current source, respectively.

Understand that this theorem cannot be used to solve networks with
two or more sources that are not in series or parallel. For it to be applied,
a potential difference or current value must be known or found using one
of the techniques discussed earlier. One application of the theorem is
shown in Fig. 9.104. Note that in the figure the known potential differ-
ence V was replaced by a voltage source, permitting the isolation of the
portion of the network including R3, R4, and R5. Recall that this was ba-
sically the approach used in the analysis of the ladder network as we
worked our way back toward the terminal resistance R5.

The current source equivalence of the above is shown in Fig. 9.105,
where a known current is replaced by an ideal current source, permitting
the isolation of R4 and R5.

Recall from the discussion of bridge networks that V � 0 and I � 0
were replaced by a short circuit and an open circuit, respectively. This
substitution is a very specific application of the substitution theorem.
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R2 R4

R3

R5

ba

I

R5

a

I

b

R1

E
+

–

R4

FIG. 9.105

Demonstrating the effect of knowing a current at some point in a complex network.

I

E

a

b

c

d

I

E

a

b

c

d

(a) (b)

+

–

+

–

FIG. 9.106

Demonstrating the impact of the reciprocity theorem.

9.8 RECIPROCITY THEOREM

The reciprocity theorem is applicable only to single-source networks. It
is, therefore, not a theorem used in the analysis of multisource networks
described thus far. The theorem states the following:

The current I in any branch of a network, due to a single voltage
source E anywhere else in the network, will equal the current
through the branch in which the source was originally located if the
source is placed in the branch in which the current I was originally
measured.

In other words, the location of the voltage source and the resulting cur-
rent may be interchanged without a change in current. The theorem re-
quires that the polarity of the voltage source have the same correspondence
with the direction of the branch current in each position.

E 45 V

I

+

–

R3

2 �

R1

12 �

R2 6 � R4 4 �

Is

FIG. 9.107

Finding the current I due to a source E.

In the representative network in Fig. 9.106(a), the current I due to the
voltage source E was determined. If the position of each is interchanged
as shown in Fig. 9.106(b), the current I will be the same value as indi-
cated. To demonstrate the validity of this statement and the theorem, con-
sider the network in Fig. 9.107, in which values for the elements of Fig.
9.106(a) have been assigned.

The total resistance is

and Is �
E

RT

�
45 V

15 �
� 3 A

 � 12 � � 6 � � 6 � � 12 � � 3 � � 15 �

 RT � R1 � R2 � 1R3 � R4 2 � 12 � � 6 � � 12 � � 4 � 2
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c

d

a

b

I
c

d

a

b

I

E

E
+

–

+

–

FIG. 9.109

Demonstrating the power and uniqueness of the reciprocity theorem.

R1 0.8 k�

R4

1.4 k�

R2 4 k�

R3 6 k�

+

–

E2 10 VE1 6 V
–

+

ETh
+

–

RTh

FIG. 9.110

Network to which PSpice is to be applied to
determine ETh and RTh.

R1

12 �

R3

2 �

R2 6 �
R4 4 �

E 45 V

I RT

Is

+

–

FIG. 9.108

Interchanging the location of E and I of Fig. 9.107 to
demonstrate the validity of the reciprocity theorem.

with

For the network in Fig. 9.108, which corresponds to that in Fig.
9.106(b), we find

and

so that

which agrees with the above.
The uniqueness and power of this theorem can best be demonstrated

by considering a complex, single-source network such as the one shown
in Fig. 9.109.

I �
16 � 2 14.5 A 2
12 � � 6 �

�
4.5 A

3
� 1.5 A

Is �
E

RT

�
45 V

10 �
� 4.5 A

 � 4 � � 2 � � 12 � � 6 � � 10 �

 RT � R4 � R3 � R1 � R2

I �
3 A

2
� 1.5 A

9.9 COMPUTER ANALYSIS

Once you understand the mechanics of applying a software package or lan-
guage, the opportunity to be creative and innovative presents itself.
Through years of exposure and trial-and-error experiences, professional
programmers develop a catalog of innovative techniques that are not only
functional but very interesting and truly artistic in nature. Now that some
of the basic operations associated with PSpice have been introduced, a few
innovative maneuvers will be made in the examples to follow.

PSpice

Thévenin’s Theorem The application of Thévenin’s theorem requires
an interesting maneuver to determine the Thévenin resistance. It is a ma-
neuver, however, that has application beyond Thévenin’s theorem when-
ever a resistance level is required. The network to be analyzed appears in
Fig. 9.110 and is the same one analyzed in Example 9.10 (Fig. 9.48).

Since PSpice is not set up to measure resistance levels directly, a 1 A
current source can be applied as shown in Fig. 9.111, and Ohm’s law can
be used to determine the magnitude of the Thévenin resistance in the fol-
lowing manner:

(9.14)0RTh 0 � ` Vs

Is

` � ` Vs

1 A
` � 0Vs 0
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FIG. 9.111

Using PSpice to determine the Thévenin resistance of a network through the
application of a 1 A current source.

In Eq. (9.14), since Is � 1 A, the magnitude of RTh in ohms is the same as
the magnitude of the voltage Vs (in volts) across the current source. The
result is that when the voltage across the current source is displayed, it
can be read as ohms rather than volts.

When PSpice is applied, the network appears as shown in Fig. 9.111.
Flip the voltage source E1 and the current source by right-clicking on the
source and choosing the Mirror Vertically option. Set both voltage
sources to zero through the Display Properties dialog box obtained by
double-clicking on the source symbol. The result of the Bias Point sim-
ulation is 2 kV across the current source. The Thévenin resistance is
therefore 2 k� between the two terminals of the network to the left of the
current source (to match the results of Example 9.10). In total, by setting
the voltage source to 0 V, we have dictated that the voltage is the same at
both ends of the voltage source, replicating the effect of a short-circuit
connection between the two points.

For the open-circuit Thévenin voltage between the terminals of inter-
est, the network must be constructed as shown in Fig. 9.112. The resis-
tance of 1 T (� 1 million M�) is considered large enough to represent an
open circuit to permit an analysis of the network using PSpice. PSpice
does not recognize floating nodes and generates an error signal if a con-
nection is not made from the top right node to ground. Both voltage
sources are now set on their prescribed values, and a simulation results in
3 V across the 1 T resistor. The open-circuit Thévenin voltage is therefore
3 V, which agrees with the solution in Example 9.10.

Maximum Power Transfer The procedure for plotting a quantity
versus a parameter of the network is now introduced. In this case, the out-
put power versus values of load resistance is used to verify that maximum
power is delivered to the load when its value equals the series Thévenin
resistance. A number of new steps are introduced, but keep in mind that
the method has broad application beyond Thévenin’s theorem and is
therefore well worth the learning process.
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FIG. 9.112

Using PSpice to determine the Thévenin voltage for a network using a very
large resistance value to represent the open-circuit condition between the

terminals of interest.

FIG. 9.113

Using PSpice to plot the power to RL for a range of values for RL.

The circuit to be analyzed appears in Fig. 9.113. The circuit is con-
structed in exactly the same manner as described earlier except for the
value of the load resistance. Begin the process by starting a New Project
labeled PSpice 9-3, and build the circuit in Fig. 9.113. For the moment,
do not set the value of the load resistance.

The first step is to establish the value of the load resistance as a vari-
able since it will not be assigned a fixed value. Double-click on the value
of RL to obtain the Display Properties dialog box. For Value, type in
{Rval} and click in place. The brackets (not parentheses) are required, but
the variable does not have to be called Rval—it is the choice of the user.
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Next select the Place part key to obtain the Place Part dialog box. If
you are not already in the Libraries list, choose Add Library and add
SPECIAL to the list. Select the SPECIAL library and scroll the Part
List until PARAM appears. Select it; then click OK to obtain a rec-
tangular box next to the cursor on the screen. Select a spot near Rval,
and deposit the rectangle. The result is PARAMETERS: as shown in
Fig. 9.113.

Next double-click on PARAMETERS: to obtain a Property Editor
dialog box which should have SCHEMATIC1:PAGE1 in the second
column from the left. Now select the New Column option from the top
list of choices to obtain the Add New Column dialog box. Under Name,
enter Rval and under Value, enter 1 followed by an OK to leave the di-
alog box. The result is a return to the Property Editor dialog box but
with Rval and its value (below Rval) added to the horizontal list. Now
select Rval/1 by clicking on Rval to surround Rval by a dashed line and
add a black background around the 1. Choose Display to produce the
Display Properties dialog box, and select Name and Value followed by
OK. Then exit the Property Editor dialog box (X) to display the screen
in Fig. 9.113. Note that now the first value (1 �) of Rval is displayed.

We are now ready to set up the simulation process. Under PSpice, se-
lect the New Simulation Profile key to open the New Simulation dialog
box. Enter DC Sweep under Name followed by Create. The Simulation
Settings-DC Sweep dialog box appears. After selecting Analysis, select
DC Sweep under the Analysis type heading. Then leave the Primary
Sweep under the Options heading, and select Global parameter under
the Sweep variable. The Parameter name should then be entered as
Rval. For the Sweep type, the Start value should be 1 �; but if we use
1 �, the curve to be generated will start at 1 �, leaving a blank from 0 to
1 �. The curve will look incomplete. To solve this problem, select 0.001 �
as the Start value (very close to 0 �) with an Increment of 1 �. Enter
the End value as 30.001 � to ensure a calculation at RL � 30 �. If we
used 30 � as the end value, the last calculation would be at 29.001 �
since 29.001 � � 1 � � 30.001 �, which is beyond the range of 30 �.
The values of RL will therefore be 0.001 �, 1.001 �, 2.001 �, . . .
29.001 �, 30.001 �, and so on, although the plot will look as if the val-
ues were 0 �, 1 �, 2 �, 29 �, 30 �, and so on. Click OK, and select Run
under PSpice to obtain the display in Fig. 9.114.

Note that there are no plots on the graph and that the graph extends to
35 � rather than 30 � as desired. It did not respond with a plot of power
versus RL because we have not defined the plot of interest for the com-
puter. To do this, select the Add Trace key (the key in the middle of the
lower toolbar that looks like a red sawtooth waveform) or Trace-Add
Trace from the top menu bar. Either choice results in the Add Traces di-
alog box. The most important region of this dialog box is the Trace Ex-
pression listing at the bottom. The desired trace can be typed in directly,
or the quantities of interest can be chosen from the list of Simulation
Output Variables and deposited in the Trace Expression listing. To find
the power to RL for the chosen range of values for RL, select W(RL) in
the listing; it then appears as the Trace Expression. Click OK, and the
plot in Fig. 9.115 appears. Originally, the plot extended from 0 � to 35 �.
We reduced the range to 0 � to 30 � by selecting Plot-Axis Settings-X
Axis-User Defined 0 to 30-OK.

Select the Toggle cursor key (which looks like a red curve passing
through the origin of a graph), and then left-click. A vertical line and a
horizontal line appears, with the vertical line controlled by the position
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FIG. 9.115

A plot of the power delivered to RL in Fig. 9.113 for a range of values for RL

extending from 0 � to 30 �.

of the cursor. Moving the cursor to the peak value results in A1 � 9.0010
as the x value and 100.000 W as the y value, shown in the Probe Cursor
box at the right of the screen. A second cursor can be generated by a right
click, which was set at RL � 30.001 � to result in a power of 71.005 W.
Notice also that the plot generated appears as a listing at the bottom left
of the screen as W(RL).

FIG. 9.114

Plot resulting from the dc sweep of RL for the network in Fig. 9.113 before
defining the parameters to be displayed.
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Note that the power to RL can be determined in more ways than one
from the Add Traces dialog box. For example, first enter a minus sign be-
cause of the resulting current direction through the resistor, and then select
V2 (RL) followed by the multiplication of I(RL) using the multiplication
operation under the Functions or Macros heading. The following expres-
sion appears in the Trace Expression box: � V2(RL)*I(RL), which is an
expression having the basic power format of P � V*I. Click OK, and the
same power curve in Fig. 9.115 appears. Other quantities, such as the volt-
age across the load and the current through the load, can be plotted against
RL by following the sequence Trace-Delete All Traces-Trace-Add
Trace-V1(RL) or I(RL).

Multisim

Superposition Let us now apply superposition to the network in Fig.
9.116, which appeared earlier as Fig. 9.9 in Example 9.3, to permit a com-
parison of resulting solutions. The current through R2 is to be determined.
Using methods described in earlier chapters for the application of Multi-
sim, the network in Fig. 9.117 results to determine the effect of the 36 V
voltage source. Note in Fig. 9.117 that both the voltage source and current
source are present even though we are finding the contribution due solely
to the voltage source. Obtain the voltage source by selecting the Place
Source option at the top of the left toolbar to open the Select a Compo-
nent dialog box. Then select POWER_SOURCES followed by
DC_POWER as described in earlier chapters.You can also obtain the cur-
rent source from the same dialog box by selecting SIGNAL_CURRENT
under Family followed by DC_CURRENT under Component. The cur-
rent source can be flipped vertically by right-clicking the source and se-
lecting Flip Vertical. Set the current source to zero by left-clicking the

R2 6 �

R1

12 � I2

I 9 AE 36 V
+

–

FIG. 9.116

Applying Multisim to determine the current I2 using
superposition.

FIG. 9.117

Using Multisim to determine the contribution of the 36 V voltage source to the
current through R2.
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FIG. 9.118

Using Multisim to determine the contribution of the 9 A current source to the
current through R2.

R1

12 �

R2 6 �E1 30 V
+

–
60 V E2+

–

R3 6 �

FIG. 9.119

Problem 1.

R2 8 �
R1 10 �I  =  9 A

E 18 V

I

+

–

FIG. 9.120

Problem 2.

source twice to obtain the SIGNAL_CURRENT_SOURCES dialog
box. After choosing Value, set Current(I) to 0 A.

Following simulation, the results appear as in Fig. 9.117. The current
through the 6 � resistor is 2 A due solely to the 36 V voltage source. The
positive value for the 2 A reading reveals that the current due to the 36 V
source is down through resistor R2.

For the effects of the current source, the voltage source is set to 0 V as
shown in Fig. 9.118. The resulting current is then 6 A through R2, with
the same direction as the contribution due to the voltage source.

The resulting current for the resistor R2 is the sum of the two currents:
IT � 2 A � 6 A � 8 A, as determined in Example 9.3.

PROBLEMS

SECTION 9.2 Superposition Theorem

1. a. Using superposition, find the current through each resis-
tor of the network in Fig. 9.119.

b. Find the power delivered to R1 for each source.
c. Find the power delivered to R1 using the total current

through R1.
d. Does superposition apply to power effects? Explain.

2. Using superposition, find the current I through the 10 � re-
sistor for the network in Fig. 9.120.
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R1 18 �

R2 9 � R3 15 � R4 10 �

24 V

E2

E1  =  + 42 V

+– I

FIG. 9.121

Problem 3.

R2

3.3 k�

R1 2.2 k�

5 mA

I R3 4.7 k�
8 V

I1
+

–

FIG. 9.122

Problem 4.

R1 6 �
I = 6 A

R4 12 �

8 VE1 12 V

R3 30 �

E2

R2 4 �

R5

4 �

+

–+

–

Vs+ –

FIG. 9.123

Problem 5.

R1 12 k�

I 9 mA

36 VE

V2

+

–
R2

6.8 k�

FIG. 9.124

Problems 6 and 42.

R1

6 �

R2 3 �E R18 V

R3

4 �

+

–

FIG. 9.125

Problem 7.

R1

12 �

2 �

R2 IR 3 A

FIG. 9.126

Problems 8 and 18.

3. Using superposition, find the current I through the 24 V
source in Fig. 9.121.

*4. Using superposition, find the current through R1 for the net-
work in Fig. 9.122.

*5. Using superposition, find the voltage across the 6 A source
in Fig. 9.123.

6. Using superposition, find the voltage V2 for the network in
Fig. 9.124.

SECTION 9.3 Thévenin’s Theorem

7. a. Find the Thévenin equivalent circuit for the network ex-
ternal to the resistor R in Fig. 9.125.

b. Find the current through R when R is 2 �, 30 �, and
100 �.

8. a. Find the Thévenin equivalent circuit for the network ex-
ternal to the resistor R for the network in Fig. 9.126.

b. Find the power delivered to R when R is 2 � and 100 �.

boy30444_ch09.qxd  3/22/06  12:55 PM  Page 389



390 ⏐⏐⏐ NETWORK THEOREMS
Th

R

20 V

10 �

3 A 25 � 6 � 72 V

6 �

3 �

2 �

R

4 �

(II)(I)

+

–+

–

FIG. 9.130

Problems 12, 21, 24, 43, and 44.

15 V

25 �

30 �

(I)

10 V

60 �
a

b

4.7 k�

2.7 k�

(II)

R1
180 V

a

b

E

47 k�R
I

18 mA

R2

3.9 k�R3

10 V

+

–

+ –

+

–
+

–

FIG. 9.131

Problem 13.

10. Find the Thévenin equivalent circuit for the network exter-
nal to the resistor R for the network in Fig. 9.128.

11. Find the Thévenin equivalent circuit for the network exter-
nal to the resistor R for the network in Fig. 9.129.

5 �

E 20 V

R2 R

5 �R1
5 �

R3

+

–

FIG. 9.127

Problems 9 and 19.

R

E1 E2 18 V72 V

3 �

6 �
+

–
+

–

FIG. 9.128

Problem 10.

5.6 k� R

2.2 k�

16 V8 mA
+

–

FIG. 9.129

Problems 11 and 20.

*12. Find the Thévenin equivalent circuit for the network exter-
nal to the resistor R in each of the networks in Fig. 9.130.

*13. Find the Thévenin equivalent circuit for the portions of the
networks in Fig. 9.131 external to points a and b.

9. a. Find the Thévenin equivalent circuit for the network ex-
ternal to the resistor R for the network in Fig. 9.127.

b. Find the power delivered to R when R is 2 � and 100 �.
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VNetwork = 20 V VNetwork = 60 mV VNetwork = 16 V

INetwork = 1.6 mA �Network = 2.72 k� Network R = 2.2 k�

(a) (b) (c)

8 V

E = 0 V
+

–

FIG. 9.135

Problem 17.

20 V 5 �

(I)

R

20 � 1.1 k�

2.2 k�

(II)

R2

– 4 V

R2E

R1

16 �R4

12 �

R3

2 �

R5 R1

4.7 k�R

E2

E1  =  +12 V

3.3 k�

R3

+

–

FIG. 9.132

Problems 14, 22, and 25.

*16. For the transistor network in Fig. 9.134:
a. Find the Thévenin equivalent circuit for that portion of

the network to the left of the base (B) terminal.
b. Using the fact that IC � IE and VCE � 8 V, determine the

magnitude of IE.

3.3 k�

6.8 k�

+ 6 V

RL

+ 22 V

5.6 k�

– 12 V

2.2 k�

1.2 k�

FIG. 9.133

Problem 15.

R1 51 k�

R2 10 k�

RC 2.2 k�

RE 0.5 k�

IE

IC

20 V20 V

B

C

E

VCE  =  8 V

+

–

VC

IB

FIG. 9.134

Problem 16.

c. Using the results of parts (a) and (b), calculate the base
current IB if VBE � 0.7 V.

d. What is the voltage VC?

17. For each vertical set of measurements appearing in Fig.
9.135, determine the Thévenin equivalent circuit.

*15. For the network in Fig. 9.133, find the Thévenin equivalent
circuit for the network external to the load resistor RL.

*14. Determine the Thévenin equivalent circuit for the network
external to the resistor R in both networks in Fig. 9.132.
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SECTION 9.4 Norton’s Theorem

18. Find the Norton equivalent circuit for the network external
to the resistor R for the network in Fig. 9.126.

19. a. Find the Norton equivalent circuit for the network exter-
nal to the resistor R for the network in Fig. 9.127.

b. Convert to the Thévenin equivalent circuit, and compare
your solution for ETh and RTh to that appearing in the so-
lution for Problem 9.

20. Find the Norton equivalent circuit for the network external
to the resistor R for each network in Fig. 9.129.

21. a. Find the Norton equivalent circuit for the network exter-
nal to the resistor R for each network in Fig. 9.130.

b. Convert to the Thévenin equivalent circuit, and compare
your solution for ETh and RTh to that appearing in the so-
lutions for Problem 12.

22. Find the Norton equivalent circuit for the network external
to resistor R for each network in Fig. 9.132.

23. Find the Norton equivalent circuit for the portions of the net-
works in Fig. 9.136 external to branch a-b.

SECTION 9.5 Maximum Power Transfer Theorem

24. a. For each network in Fig. 9.130, find the value of R for
maximum power to R.

b. Determine the maximum power to R for each network.

25. a. For each network in Fig. 9.132, find the value of R for
maximum power to R.

b. Determine the maximum power to R for each network.

26. For the network in Fig. 9.133, find the value of RL for max-
imum power to RL and determine the maximum power to RL.

27. a. For the network in Fig. 9.137, determine the value of R
for maximum power to R.

b. Determine the maximum power to R.
c. Plot a curve of power to R versus R for R equal to

, and 2 times the value obtained in
part (a).

*28. Find the resistance R1 in Fig. 9.138 such that the resistor R4

will receive maximum power. Think!

1
4, 

1
2, 

3
4, 1, 11

4, 1
1
2, 1

3
4

a

12 V

6 �

12 �

(b)(a)

2 A

72 V
b

100 �

12 �

6 V

2 �

4 �

4 �

a

2 V

300 �

b
4 �

+

–
+

–

+

–
+

–

FIG. 9.136

Problems 23 and 45.

24 V

4 �5 A RR2

4 �R1

E

I
+

–

FIG. 9.137

Problem 27.

100 V 50 �R4

R1

50 �R2

50 �

R3

+

–

FIG. 9.138

Problem 28.

*29. a. For the network in Fig. 9.139, determine the value of R2

for maximum power to R4.
b. Is there a general statement that can be made about situ-

ations such as those presented here and in Problem 28?

100 V R4R2

25 �

R3

25 �

R1

E
+

–

FIG. 9.139

Problem 29.

*30. For the network in Fig. 9.140, determine the level of R that
will ensure maximum power to the 100 � resistor.
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R2

4.7 �

8 mA

I2

I1

10 mA

R1 2 k� I3

4 mA

R3 8.2 k�

6.8 k�

RL

FIG. 9.145

Problem 35.

+

–

400 V 50 �R2E1

20 VE2

+

–
80 �R1

RL 200 � 10 VE3

+

–

R3

50 �

FIG. 9.143

Problem 33.

R1

4.7 � RL 2.7 �

I1  =  4 A

R2

3.3 �

I2  =  1.6 A

FIG. 9.144

Problem 34.
SECTION 9.6 Millman’s Theorem

31. Using Millman’s theorem, find the current through and volt-
age across the resistor RL in Fig. 9.141.

32. Repeat Problem 31 for the network in Fig. 9.142.

12 V

RL

500 �  Pot.

R

100 �

+

–

FIG. 9.140

Problem 30.

40 V

6 �R2

E1

RL 3 �

42 VE2

10 �R1

+

–

+

–

FIG. 9.141

Problem 31.

5 V 8.2 k�R2E1

RL 5.6 k�

20 VE2

+

–
2.2 k�R1

+

–

FIG. 9.142

Problem 32.

33. Repeat Problem 31 for the network in Fig. 9.143.

34. Using the dual of Millman’s theorem, find the current
through and voltage across the resistor RL in Fig. 9.144.

*35. Repeat Problem 34 for the network in Fig. 9.145.

SECTION 9.7 Substitution Theorem

36. Using the substitution theorem, draw three equivalent
branches for the branch a-b of the network in Fig. 9.146.

7 k�15 k�60 VE

8 k�2.5 k� a

b

+

–

FIG. 9.146

Problem 36.

37. Repeat Problem 36 for the network in Fig. 9.147.

2 k� 1.5 k�

R2

0.51 k�

4 mA

I

10 V

E
ba

R1

+ –

FIG. 9.147

Problem 37.
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*38. Repeat Problem 36 for the network in Fig. 9.148. Be careful!

R2 12 �20 VE1

8 �4 � a

b

40 VE2

R3R1

+

– +

–

FIG. 9.148

Problem 38.

SECTION 9.8 Reciprocity Theorem

39. a. For the network in Fig. 9.149(a), determine the current I.
b. Repeat part (a) for the network in Fig. 9.149(b).
c. Is the reciprocity theorem satisfied?

24 VE

4 k�8 k�

24 k�
20 k�

24 k�

I

(a)

24 V

E

4 k�8 k�

24 k�

24 k�

I

(b)

+

–

+

–

20 k�

FIG. 9.149

Problem 39.

40. Repeat Problem 39 for the networks in Fig. 9.150.

+–
+

–

4 k� 4 k�

4 k� 8 k�

E

10 V

I

(a)

4 k� 4 k�

4 k� 8 k�

E 10 V
I

(b)

FIG. 9.150

Problem 40.

R1 3 �

R2

2 �

R3 4 �I

6 A

+  V  –

(a)

R1 3 �

R2

2 �

R3 4 �

I  =  6 A

V

(b)

+

–

FIG. 9.151

Problem 41.

41. a. Determine the voltage V for the network in Fig. 9.151(a).
b. Repeat part (a) for the network in Fig. 9.151(b).
c. Is the dual of the reciprocity theorem satisfied?
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SECTION 9.9 Computer Analysis

42. Using PSpice or Multisim, determine the voltage V2 and its
components for the network in Fig. 9.124.

43. Using PSpice or Multisim, determine the Thévenin equiva-
lent circuit for the network in Fig. 9.130(b).

*44. a. Using PSpice, plot the power delivered to the resistor R
in Fig. 9.130(a) for R having values from 1 � to 50 �.

b. From the plot, determine the value of R resulting in max-
imum power to R and the maximum power to R.

c. Compare the results of part (a) to the numerical solution.
d. Plot VR and IR versus R, and find the value of each under

maximum power conditions.

*45. Change the 300 � resistor in Fig. 9.136(b) to a variable re-
sistor, and using PSpice plot the power delivered to the re-
sistor versus values of the resistor. Determine the range of
resistance by trial and error rather than first performing a
longhand calculation. Determine the Norton equivalent cir-
cuit from the results. The Norton current can be determined
from the maximum power level.

GLOSSARY

Maximum power transfer theorem A theorem used to deter-
mine the load resistance necessary to ensure maximum power
transfer to the load.

Millman’s theorem A method using source conversions that will
permit the determination of unknown variables in a multiloop
network.

Norton’s theorem A theorem that permits the reduction of any
two-terminal linear dc network to one having a single current
source and parallel resistor.

Reciprocity theorem A theorem that states that for single-source
networks, the current in any branch of a network, due to a sin-
gle voltage source in the network, will equal the current
through the branch in which the source was originally located
if the source is placed in the branch in which the current was
originally measured.

Substitution theorem A theorem that states that if the voltage
across and current through any branch of a dc bilateral network
are known, the branch can be replaced by any combination of
elements that will maintain the same voltage across and cur-
rent through the chosen branch.

Superposition theorem A network theorem that permits consid-
ering the effects of each source independently. The resulting
current and/or voltage is the algebraic sum of the currents
and/or voltages developed by each source independently.

Thévenin’s theorem A theorem that permits the reduction of any
two-terminal, linear dc network to one having a single voltage
source and series resistor.
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