12) Para o Retificador Trifásico em Ponte (Ponte de Graetz) a Diodo a seguir:

a. Desenhe:
i. Tensão e corrente na carga \mathbf{R};
ii. Tensão e corrente no diodo D_{4};
iii. Corrente na fonte $\mathrm{V}_{2}(\omega \mathrm{t})$;

EXERCÍCIOS - RETIFICADORES A DIODO - RESOLUÇÃO

b. Calcule:
i. Tensão e corrente média na carga;
$V_{\text {Lmed }}=-2,34 \cdot V_{O} \Rightarrow V_{\text {Lmed }}=-2,34 \cdot 110,0 \Rightarrow V_{\text {Lmed }}=-257,4 \mathrm{~V}$
$I_{L \text { med }}=\frac{V_{L \text { med }}}{R} \Rightarrow I_{\text {Lmed }}=\frac{-257,4}{35} \Rightarrow I_{\text {Lmed }}=-7,35 \mathrm{~A}$
ii. Tensão e corrente eficaz na carga;
$V_{\text {Lef }}=\left|V_{\text {Lmed }}\right| \Rightarrow V_{\text {Lef }}=257,4 \mathrm{~V}$
$I_{\text {Lef }}=\left|I_{\text {Lmed }}\right| \Rightarrow I_{\text {Lef }}=7,35 \mathrm{~A}$
iii. Potência na carga;
$P_{L}=V_{L e f} \cdot I_{L e f} \Rightarrow P_{L}=257,4 \cdot 7,35 \Rightarrow P=1893,0 W$
iv. Fator de Potência do circuito;
$F_{P}=\frac{P}{S} \Rightarrow F_{P}=\frac{\frac{V_{L e f} \cdot \lambda_{L x}}{3}}{V_{O} \cdot \lambda_{\triangle x} \cdot \sqrt{\frac{2}{3}}} \Rightarrow F_{P}=\frac{2,34 \cdot \chi_{Q}}{3} \cdot \frac{\sqrt{3}}{V_{\alpha} \cdot \sqrt{2}} \Rightarrow F_{P}=\frac{2,34}{\sqrt{2} \cdot \sqrt{3}} \Rightarrow F_{P}=0,955$
v. Resistência térmica do dissipador a ser fixado no diodo D_{4};
$I_{\text {Dmed }}=\frac{I_{\text {Lmed }}}{3} \Rightarrow I_{\text {Dmed }}=\frac{7,35}{3} \Rightarrow I_{\text {Dmed }}=2,45 \mathrm{~A}$
$I_{\text {Def }}=\frac{I_{L e f}}{\sqrt{3}} \Rightarrow I_{\text {Def }}=\frac{7,35}{\sqrt{3}} \Rightarrow I_{\text {Def }}=4,25 \mathrm{~A}$
$P_{D}=\left(V_{D} \cdot I_{D m e d}\right)+\left(r_{D} \cdot I_{D e f}{ }^{2}\right) \Rightarrow P_{D}=(0,95 \cdot 2,45)+\left(0,045 \cdot 4,25^{2}\right) \Rightarrow P_{D}=3,14 W$
$R_{T D A}=\frac{T_{J}-T_{A}}{P_{D}}-R_{T J C}-R_{T C D} \Rightarrow R_{T D A}=\frac{150-40}{3,14}-1,5-3,0 \Rightarrow R_{T D A}=30,53^{\circ} \mathrm{C} / \mathrm{W}$
vi. Valor do capacitor de filtragem a ser inserido junto a carga para reduzir a ondulação da tensão à $8,0 \%$ do valor de pico.
$V_{L \max }=\sqrt{2} \cdot \sqrt{3} \cdot 110,0 \Rightarrow V_{L \max }=269,4 \mathrm{~V}$
$V_{\text {ripple }}=(8,0 \%) \cdot V_{L \max } \Rightarrow V_{\text {ripple }}=0,08 \cdot 269,4 \Rightarrow V_{\text {ripple }}=21,56 \mathrm{~V}$
$V_{L \min }=V_{L \max }-V_{\text {ripple }} \Rightarrow V_{L \min }=269,4-21,56 \Rightarrow V_{L \min }=247,9 \mathrm{~V}$
$P_{L}=\frac{\left(V_{L \max }+V_{L \min }\right)^{2}}{4 \cdot R} \Rightarrow P_{L}=\frac{(269,4+247,9)^{2}}{4 \cdot 35} \Rightarrow P_{L}=1911,7 \mathrm{~W}$
$C=\frac{2 \cdot P_{L}}{f \cdot\left(V_{L \max }^{2}-V_{L \min }^{2}\right)} \Rightarrow C=\frac{2 \cdot 1911,7}{360 \cdot\left(269,4^{2}-247,9^{2}\right)} \Rightarrow C=952,4 \mu F$

