

INICIAÇÃO À PRÁTICA PROFISSIONAL INSTALAÇÃO ELÉTRICA PREDIAL

1º SÉRIE **NOTA DE AULA 1**

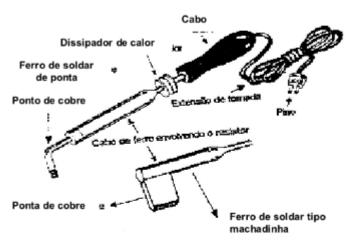
CURSO TÉCNICO EM ELETROTÉCNICO

INICIAÇÃO À PRÁTICA PRÁTICA PROFISSIONAL IPP

Instalação Elétrica Predial I

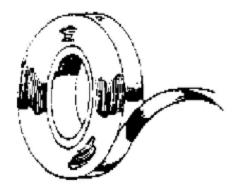
Dorival Brito

Mateus Barreto


INICIAÇÃO À PRÁTICA PROFISSIONAL - INSTALAÇÃO ELÉTRICA PREDIAL

2 FERRO DE SOLDAR

É uma ferramenta composta de tubo de ferro, onde se encontra alojado um resistor elétrico que, liga à rede de energia por meio de um fio de tomada que emerge do cabo, aquece uma ponta de cobre o suficiente para fundir a solda de estanho e aquece os metais a soldar.


OBS. Verificar a tensão de linha.

2.1 Fita Plástica Isolante Líquida e Química

É uma fita de plástico que tem uma das fases adesiva. É utilizada para isolar as emendas dos condutores. Não só para evitar o choque e o curto-circuito, como também para evitar a oxidação dos condutores e emendas.

Fita Isolante

Fita isolante Líquida Quimatic

2.2 Isola e Impermeabiliza Conexões Elétricas

INFORMAÇÕES TÉCNICAS: - Numa espessura de 1mm isola tensão de até 6.500 volts – adere a metais, plásticos, borracha, vidro, etc. – Isola perfeitamente ao ar livre e debaixo d'água. – Flexível. – Não propaga a chama em estado seco. – Aplicável a pincel ou por imersão.

É O MELHOR MÉTODO PARA ISOLAR, IMPERMEABILIZAR E VEDAR CONEXÕES ELÉTRICAS EXPOSTAS ÀS INTEMPÉRIES, ENTERRADAS, DENTRO DE ÁGUA, EM LOCAIS ÚMIDOS.

APLICADO POR IMERSÃO, ISOLA BOBINAS, CABOS DE FERRAMENTAS, CIRCUITOS IMPRESSOS, ETC.

Vantagens:

- Impede corrosão de fios e conectores;
- Não descasca mesmo ao ar livre;
- Ideal para isolamento elétrico de ferramentas e instrumentos;
- Apresentada em diversas cores, o que facilita seu emprego como lacre de inviolabilidade:
- Circuitos impressos podem ser isolados, protegidos e impermeabilizados com o tipo incolor, que é transparente;
- Quando isolados e recobertos, impede afrouxamento de parafusos de conectores;
- Aplicação facilitada, pois possibilita isolamento de fios finos e componentes, onde a fita isolante convencional não pode ser usada;
- Vantajosa em todas as instalações ao ar livre, bombas submersas ou subaquáticas, instrumentos, telefonia, computadores e todas as ligações elétricas de alta segurança;
- As diversas cores facilitam identificação de conexões elétricas.

3

2.2 Isola e Impermeabiliza Conexões Elétricas

INFORMAÇÕES TÉCNICAS: - Numa espessura de 1mm isola tensão de até 6.500 volts – adere a metais, plásticos, borracha, vidro, etc. – Isola perfeitamente ao ar livre e debaixo d'água. – Flexível. – Não propaga a chama em estado seco. – Aplicável a pincel ou por imersão.

É O MELHOR MÉTODO PARA ISOLAR, IMPERMEABILIZAR E VEDAR CONEXÕES ELÉTRICAS EXPOSTAS ÀS INTEMPÉRIES, ENTERRADAS, DENTRO DE ÁGUA, EM LOCAIS ÚMIDOS.

APLICADO POR IMERSÃO, ISOLA BOBINAS, CABOS DE FERRAMENTAS, CIRCUITOS IMPRESSOS, ETC.

Vantagens:

- Impede corrosão de fios e conectores;
- Não descasca mesmo ao ar livre:
- Ideal para isolamento elétrico de ferramentas e instrumentos;
- Apresentada em diversas cores, o que facilita seu emprego como lacre de inviolabilidade:
- Circuitos impressos podem ser isolados, protegidos e impermeabilizados com o tipo incolor, que é transparente;
- Quando isolados e recobertos, impede afrouxamento de parafusos de conectores;
- Aplicação facilitada, pois possibilita isolamento de fios finos e componentes,
 onde a fita isolante convencional não pode ser usada;
- Vantajosa em todas as instalações ao ar livre, bombas submersas ou subaquáticas, instrumentos, telefonia, computadores e todas as ligações elétricas de alta segurança;
- As diversas cores facilitam identificação de conexões elétricas.

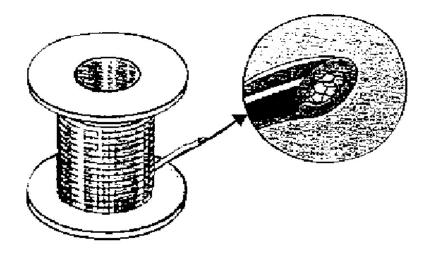
Oferecida em 5 cores:

Preto, Branco, Vermelho, Incolor, Amarelo.

EMBALAGENS: 200mLl (com espátula na tampa) e 1 galão.

Disponível nas boas lojas de material elétrico, ferragens e de construção.

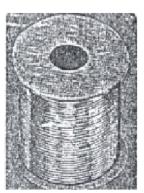
2.3 Solda de Estanho

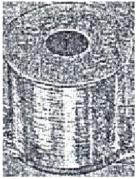

Também conhecida como solda fresca ou solda branca.

Chumbo- 33%

Estanho- 67%

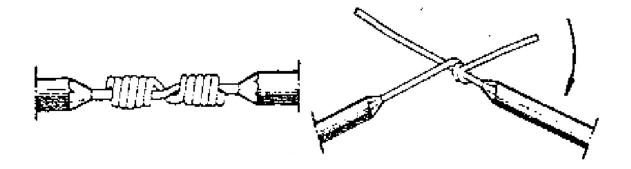
É uma liga de chumbo e estanho que, ao fundir-se, adere aos outros metais, especialmente o cobre e o bronze, se estes estiverem, pelo menos, à mesma temperatura e desoxidados.


Em instalações elétricas, a solda serve para produzir um bom contato na emenda dos condutores e torná-la mais resistente ao esforço de tração.



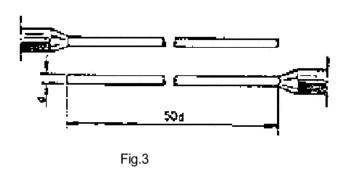
Acima = Aplicação da extremidade de um fio de seda, os dois canais internos contêm a resina necessária à soldagem.

2.4 Pasta Desoxidante


É uma substância pastosa de ação decapante ou desoxidante, quando aquecida à temperatura de fusão. A pasta desoxidante é muito usada como fundente na soldagem de emendas dos condutores, terminais e todo o tipo de conexões elétricas que exijam bom contato e uma melhor resistência mecânica.

2.5 Emendar Condutores em Prosseguimento

Esta operação consiste unir fios condutores, para prolongar linhas (fig.1), e utiliza-se em todo tipo de instalações. Realiza-se com condutores de até 4mm² de seção.

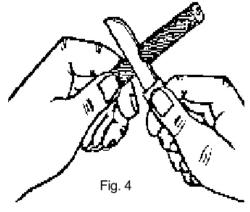


2.6 Processo de Execução

 Coloque o alicate perpendiculamente ao condutor de corte (Fig.2).

Fig. 2

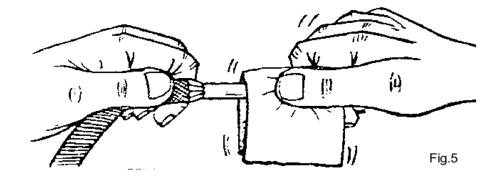
- Desencape as pontas dos condutores.
- a) Marque com o canivete, sobre o extremo desse condutor, uma distância de aproximadamente 50 vezes o diâmetro desse condutor (Fig.3).


OBS. Na prática você deverá desencapar o fio;

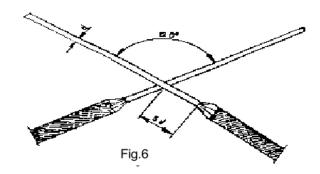
1,5 - 8cm

2,5 - 10cm

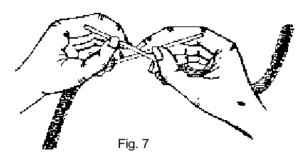
4 - 13cm


b) Desencape as pontas a partir das marcas até retirar toda a capa isolante (Fig.4).

∑ Precaução

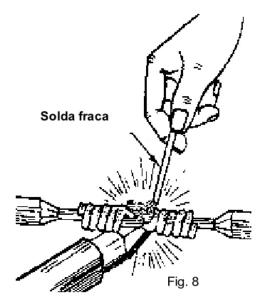

EMPREGUE COM CUIDADO O CANIVETE, PARA NÃO SE FERIR.

- Lixe o condutor até que o metal fique brilhante (Fig.5)



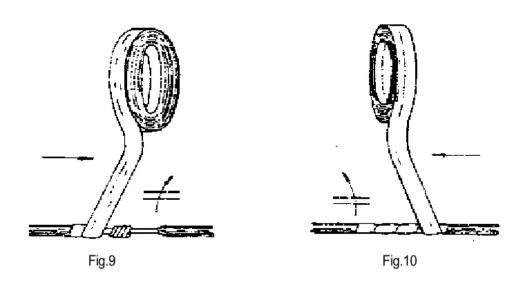
OBSERVAÇÃO: Quando o condutor for estalado não deve ser lixado.

a) Cruze o condutor à 120°, com
 o principal e segure-os como o
 alicate universal (Fig.6).



b) Enrole o condutor com as mãos sobre o outro e em seguida, use o alicate universal, mantendo as espiras uma ao lado da outra no mínimo 6 espiras. (Fig.7).

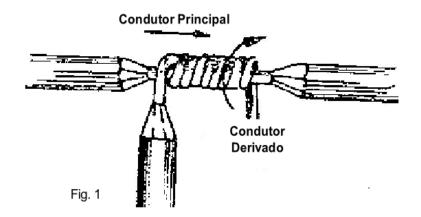
2.7 Soldar a Emenda


- a) Apóie o soldador bem quente, limpo e com a ponta bem estanhada na parte inferior da emenda, aplicando ao mesmo tempo o desoxidante sobre a mesma.(Fig.8).
- b) Apóie fio de solda na parte superior da emenda, até que a solda fundida preencha todos os espaços entre as voltas e cubra totalmente a emenda.

OBSERVAÇÃO 1

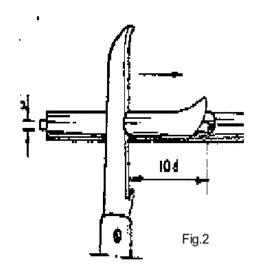
A soldagem sempre deve ser feita imediatamente depois de efetuada.

- Isole com fita isolante ou líquida química.
 - a) Enrole a fita obliquamente, cobrindo parte do encapamento dos condutores (Fig.9);
 - b) Coloque uma segunda camada, conforme a figura 10.



OBSERVAÇÃO 2

- 1 Cada volta da fita isolante deve cobrir uma quarta parte da volta anterior.
- 2 Mantenha a fita isolante tensa.


2.8 Emendar Condutores Derivação

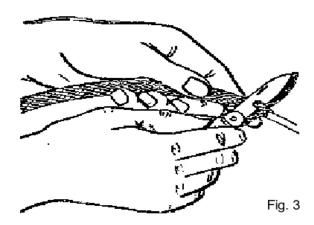
Esta operação consiste em unir o extremo de um condutor (ramal) numa região intermediária do outro (rede), para tomar uma alimentação elétrica. Emprega-se em todos os tipos de instalações, com condutores de até 2,5mm. (Fig.1).

∑ Processo de Execução

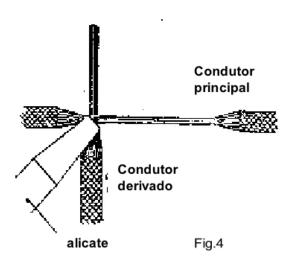
- Desencape os condutores.
- a) Desencape o extremo do condutor derivado, num comprimento aproximado de 50 vezes seu diâmetro.
- b) Desencape o outro condutor, na região onde se efetuará a emenda, num comprimento aproximado de 10 vezes o diâmetro do condutor. (Fig.1).

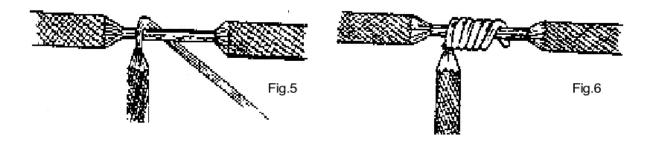
OBSERVAÇÃO 1

O canivete não deve atingir o condutor.

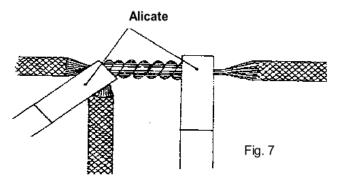

Precaução

CUIDADO PARA NÃO SE FERIR COM O CANIVETE.


- Limpe os condutores nas regiões desencapadas, usando as costas do canivete. (Fig.3).

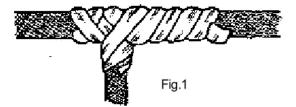

OBSERVAÇÃO 2

Quando o condutor for estanhado não deve ser raspado e nem lixado.



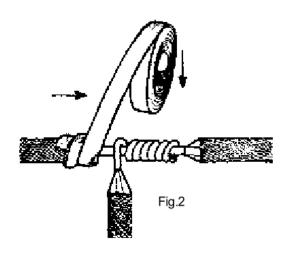
- Enrole o extremo do condutor derivado sobre o principal.
 - a) Cruze o condutor à 90° com o principal e segure-os com o alicate universal. (Fig.4).
 - b) Enrole à mão o condutor derivado sobre o principal (Fig.5) mantendo as espiras uma ao lado da outra, e no mínimo de 6 espiras. (Fig.6).

c) Aperte com outro alicate as espiras e arremate à última. (Fig.7).

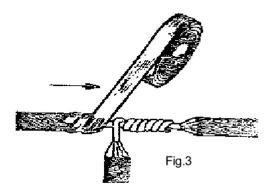


OBSERVAÇÃO 3

As espiras não devem ficar sobre o isolamento do condutor.


2.9 Cobertura de Superfícies Decapadas

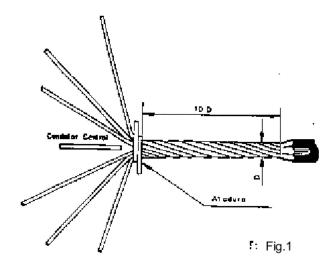
Esta operação consiste em cobrir superfícies desencabadas de condutores com fita isolante (Fig.1). É executada para restabelecer as condições de isolação dos condutores elétricos.



∑ Processo de Execução

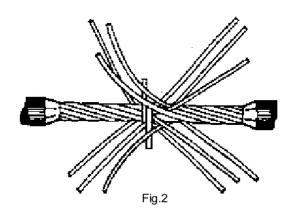
a) Enrole as pontas da fita isolante à capa do condutor, com o polegar (Fig.2).

b) Enrole a fita isolante sobre a superfície nua do condutor, de modo que cada volta segue a metade da volta anterior (Fig.3).

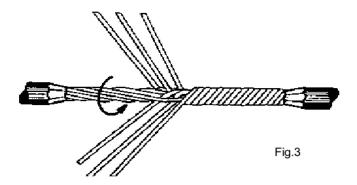


2.10 Prolongar Condutores Flexíveis (Cabos)

Esta operação consiste em unir dois cabos, para prolongar uma linha elétrica. Realiza-se quando não é suficientemente o comprimento de um só cabo. Para cobrir a distância entre elementos que se quer interconectar.


∑ Processo de Execução

- Desencape as pontas de cada cabo, num comprimento aproximado de 20 vezes o seu diâmetro.
- Prenda os fios na metade da região desencabada de cada cabo (Fig.1).



Instalação eletrica Predial

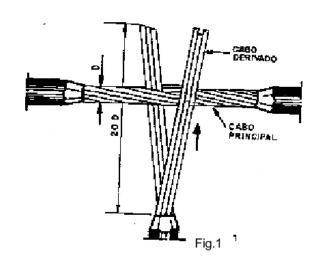
- Abra os cabos, alinhe seus condutores e limpe-os até a atadura.
- Corte o condutor central de cada um dos cabos, junto à atadura (Fig.1).
- Enrole os condutores.
- a) Retire a atadura de um dos cabos.
- b) Enfrente os cabos, intercalando os condutores e comece a enrolar em sentido contrário ao trançado do cabo do qual retirou a atadura (Fig.2).

c) Retire a outra atadura e enrole os condutores do outro lado, como na anterior (Fig.3).

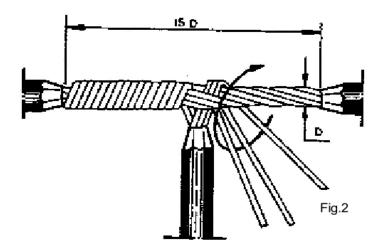
- Aperte a emenda com auxilio de alicates e arremate os extremos dos condutores até que fique como na figura 4.

- Solde e isole a emenda.

2.11 Derivar Condutores Flexíveis (Cabos)

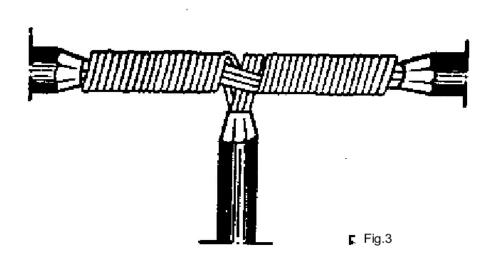

Esta operação consiste em unir condutores flexíveis em derivação. Executa-se quando é necessário fornecer energia elétrica a um circuito ramal, a partir de um principal.

∑ Processo de Execução


- Desencape e limpe o extremo do condutor que constitui o cabo derivado, em um comprimento igual a 20 vezes o seu diâmetro.
- Desencape e limpe a região do cabo principal, onde deve realizar a derivação,
 em um comprimento igual a 15 vezes o diâmetro do cabo derivado.
- Destorça e alinhe os fios do cabo derivado.
- Corte o fio central do cabo derivado, na altura do isolamento.
- Abra o cabo principal.
- a) Segure com dois alicates, o cabo principal e destorça; fazendo-o girar em sentido contrário ao seu trançado.
- b) Introduza uma cunha no centro da região desencapada, deixando uma abertura por onde introduzirá o cabo derivado.

OBSERVAÇÃO 1

Dado que o cabo tem número ímpar de condutores, ficará um lado de cunha com um condutor a mais que o outro.


- Introduza o cabo derivado na abertura (Fig.1).
- Enrole a metade dos condutores do cabo derivado, sobre o cabo principal, em sentido contrário ao trançado deste último (Fig.2).

)BSERVAÇÃO 2

)s condutores do cabo derivado não devem sobrepor-se.

- Enrole a outra metade dos condutores em sentido contrário aos enrolados no passo anterior (Fig.2).
- Aperte a derivação, com um alicate (Fig.3).
- Solde e isole a derivação.

3 EFEITO DA CORRENTE ELÉTRICA NO CORPO HUMANO

O corpo humano é condutor de eletricidade. A passagem de eletricidade pelo corpo humano pode ser perigosa dependendo da intensidade da corrente, do caminho por onde circula, o tempo de atuação e do tipo de corrente elétrica. Uma pessoa suporta, durante um curto período de tempo, até 40 mA.

E a partir de 9mA o corpo já começa a sentir sensações desagradáveis. Com as mãos unidas, sua resistência total é de aproximadamente 1300Ω (Fig.1). Para circular esta corrente é necessária uma tensão de:

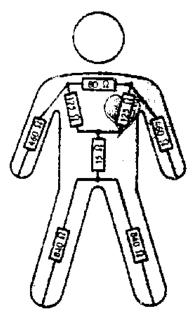


Fig.1

U = R . I $U = 1 300\Omega . 0,040A^A$ U = 52 v

Em nível internacional, tensões superiores a 50v são consideradas perigosas.

3.1 Efeito da Corrente Elétrica

AMBEDE	FFFITOO
0.005	Pequenos estímulos nervosos.
0,010 a 0,025	·
	Aumento da pressão sanguínea, transtornos
0,025 a 0,060	
0.080 a 5	cardíacos e respiratórios, desmaios.
0,000 a 5	Corrente alternada pode provocar a morte
A simo s 5	por contrações rápidas do coração (fibrilação).
Acima 5	Queimadura da pele e dos músculos, parada
	cardíaca.

Chances de Salvamento

Tempo após o choque p/ iniciar respiração	Chances de reanimação da
artificial	vítima
1 minuto	95%
2 minutos	90%
3 minutos	75%
4 minutos	50%
5 minutos	25%
6 minutos	1%
8 minutos	0,5%

4 CURVAMENTO DE ELETRODUTO DE P.V.C.

Geralmente, no trabalho do eletricista, há necessidade de desviar o percurso da

instalação para transpor obstáculos. Quando isto ocorre na instalação em que se

utiliza eletroduto, o eletricista pode aplicar uma curva padrão, comumente

encontrada no comercio com 90°.

Mas nem sempre essas curvas atendem a natureza do serviço, se isto acontece. o

eletricista deve curvar o eletroduto. Vejamos os dispositivos que são utilizados para

curvar eletroduto.

A mola: É um utensílio constituído por um arame de aco, enrolado sob forma de

espira, com uma guia terminada numa argola.

Utilizada para impedir deformação do diâmetro interno do eletroduto durante o

curvamento.

A areia: O eletroduto deve estar tampado em um dos lados. Encher com areia fina e

enxuta, bem compactada e depois tampá-lo para seguir as marcações.

Soprador térmico: Dispositivo utilizado como fonte de calor para curvar eletrodutos.

Para curvar eletrodutos deve-se proceder lentamente, com muito cuidado e de

maneira controlada, para assim se conhecer o efeito do calor no material

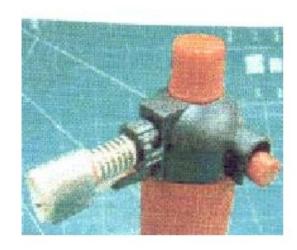
correspondente, porque nesse caso, variações relativamente pequenas na

temperatura podem causar deformações.

Iniciação à Prática Profissional - Instalação Elétrica Predial

19

12/02/2017



5 SOPRADOR TÉRMICO

Moldagem ou soldagem de plástico.

Caso se deseja dobrar, moldar ou soldar peças de PVC ou polietileno, deve-se proceder lentamente, com muito cuidado e de maneira controlada, para assim se conhecer o efeito do calor no material correspondente, porque nestes casos, variações relativamente pequenas na temperatura podem causar deformações nas peças.

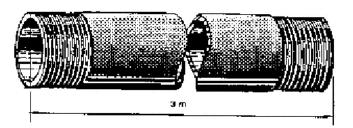
∑ Característica Técnicas

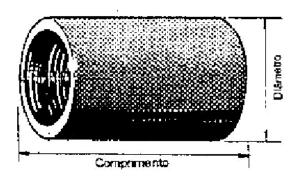
Tipo: HL 1500

Potência: 1400 watts

Temperatura do ar da saída: I - 300°c II - 500°c

Volume de saída de ar: 220v (I - 240 I/min II - 400 I/min).


Dupla Isolação


6 MONTAR REDE DE ELETRODUTOS EXPOSTA

ELETRODUTO: São tubos de metal ou plástico, rígido ou flexível, utilizados com a finalidade de proteger os condutores elétricos, contra a umidade, ácidos, gases ou choques mecânicos.

OBS: Pode ser adquirido em varas de 3 metros e dotado de rosca externa nas extremidades.

LUVA: Peça de metal, dotada de rosca interna, servindo para unir eletrodutos.

6.1 Como Selecionar Eletroduto

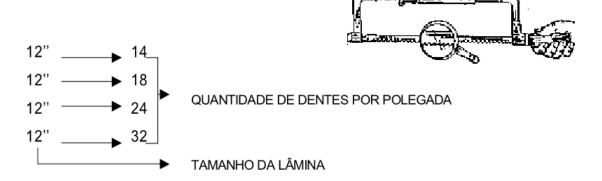
Máximo número de condutores no mesmo eletroduto.

MÁXIMO NÚMERO DE CONSTRUTORES NO MESMO ELETRODUTO

Bitola do Condutor	NI	MERO	DE CON	IDUTO	RES NO	MESM	O EL ET	RODUT	<u> </u>
$AWG - (mm^2)$	1	2	3	4	5	6	7	8	9
` ′		DIÂM	IETRO I	OFLE	TRODL	TO FM	POLEG	ADA	
14 (1.5)	1/2	1/3	1/2	1/2	3/4	3/4	3/4	1	1
12 (2.5)	1/2	1/2	1/3	3/4	3/4	1	1	1	1 1/4
10 (4)	1/2	3/4	3/4	3/4	1	1	1 1/4	1 1/4	1 1/4
8 (6)	1/2	3/4	1	1	1 1/4	1 1/4	1 1/4	1 1/4	1 1/2
6 (10)	1/2	1	1 1/4	1 1/4	1 1/3	1 1/3	2	2	2
4 (16)	3/4	1 1/4	1 1/4	1 1/3	2	2	2	2	2 1/3
2 (2 5)	3/4	1 1/4	1 1/3	1 1/3	2	2	2 1/2	2 1/3	2 1/2
1/0 (50)	1	1 1/3	2	2	2 1/2	2 1/2	3	3	3
2/0 (70)	1	2	2	2 1/3	2 1/2	3	3	3	3 1/2
3/0 (70)	1	2	2	2 1/2	3	3	3	3 1/2	3 1/2
4/0 (9.5)	1 1/4	2	2 1/3	2 1/3	3	3	3 1/2	3 1/2	3 1/2

6.2 Como Selecionar Luvas

Diâmetro	Comprimento			
Polegadas	Milímetro	em		
		Milímetros		
1/2	12,70	38		
3/4	18,05	38		
1	25,40	46		
1 1/4	31,78	51		
1 ½	38,10	51		
2	50,60	51		
2 ½	63,50	76		
3	76,20	76		
3 ½	88,90	88		
4	101,10	88		
5	127,00	102		
6	182,40	102		


7 CORTE E ABERTURA DE ROSCA EM TUBO PVC

É o ato de cortar o eletroduto no tamanho adequado para utilização e depois abrir rosca para fazer o acabamento da instalação através de acessórios. Vamos conhecer agora o equipamento e material necessário para abrir rosca e cortar eletroduto.

∑ Eletroduto: São tubos atualmente de plástico, rígidos ou móvel, utilizados com a finalidade de conter e proteger os condutores elétricos, contra a umidade, ácidos, gases ou choques mecânicos.

∑ Serra Manual: Compõe-se de arco e lâmina de serra, podendo assim encontrar com as seguintes características:

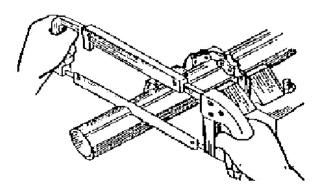
∑ Tarrafa: Ferramenta usada para abrir rosca externa em eletroduto de PVC.

Colocar e pressionar a guia de forma que ela fique perfeitamente assentada no encosto do porta-cossinete.

Montar o cossinete com o chanfro de entrada de rosca contra a guia, ajustar a posição do cossinete de tal forma que os furos laterais de travamento fiquem na direção de encaixe dos pegadores.

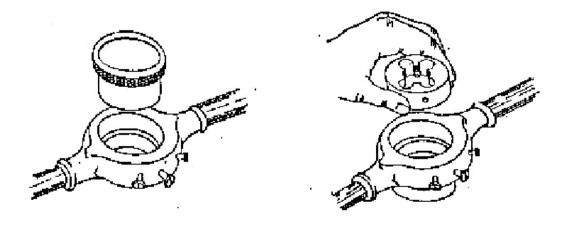


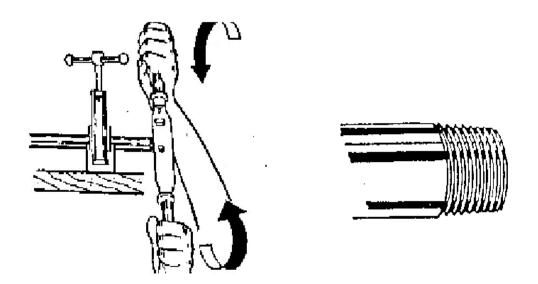
Fixar os pegadores, observando que o pino de aço contido na extremidade do pegador já serve para o travamento do guio do cossinete.


Ocorrendo dificuldade para atarraxar o pegador até o final da rosca, deve-se ajustar a posição do cossineta. Basta alinhar o sinal da face do cossinete com o sinal do porta-cossinete.

∑ Morsa de Bancada para Tubo: Ferramenta de aperto, constituída por uma mandíbula fixa e outra móvel, guarnecida por mordentes de aço.

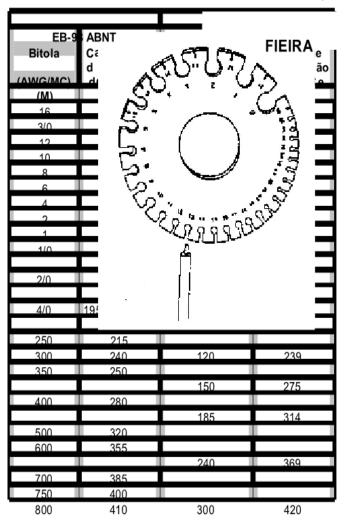
© Corte o eletroduto.


- a Meça e marque no eletroduto o comprimento desejado.
- b Prenda o eletroduto na morsa, de modo que a marca fique voltada para cima e uns 15cm para fora.

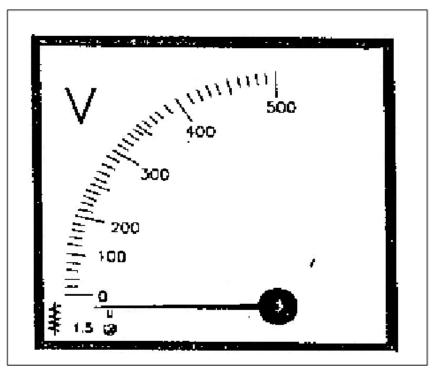

© Abra a rosca

a – Selecione o cociente e o guia próprios, de acordo com o diâmetro nominal do eletroduto.

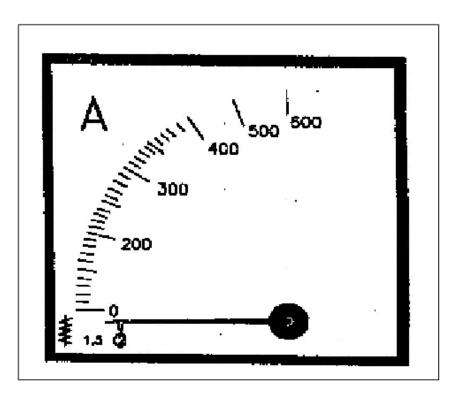
b - Monte a tarraxa.



© Abra rosca no eletroduto: Dê um movimento de rotação na tarraxa (sentido horário) forçando para dentro para formar sulcos iniciais.

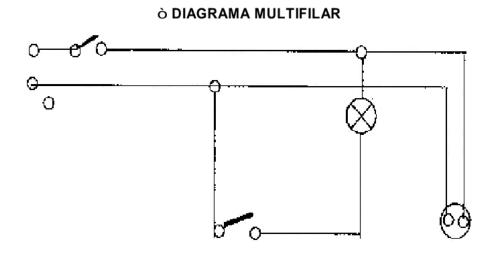


8 SELEÇÃO DE CONDUTORES

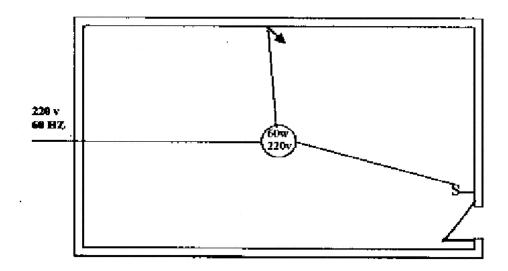

Para selecionar o fio condutor e cabos, você deverá conhecer a intensidade da corrente elétrica do circuito e consultar a tabela para identificar a bitola adequada.

U – Tensão Elétrica	٧-	Volt		
IxR	P/ I	√P/R		
I - Corrente Elétrica	Α-	Amper		
U/R	P/U	√ P/R		
R – Resistência Elétr				
U/I	U^2/P	P/I ²		
P – Potência Elétric	w – Walt			
UxI	$I^2 \times R$	U^2/R		
V – Tensão Elétrica	V	– Volt		
I x Rx √ 3	P/I x v 3	√PxR		
I - Corrente Elétrica	A	- Amper		
U/R	P/U	√ P/R / R x √ 3		
R – Resistência Elétr		Ohm		
U/I x √ 3	U ² /P	$P/(I \times \sqrt{3})^2$		
P – Potência Elétric	W -	Walt		
11 7 1 7 1 2		Profissional Himetalação		

Voltímetro

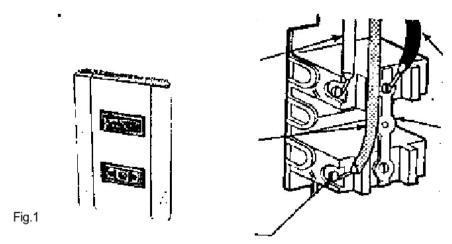


Amperímetro


9 LÂMPADA INCANDESCENTE E INTERRUPTOR

∑ Interruptor Simples: Constituído de plástico possuindo uma alavanca ou tecla que, através de contatos, fecha ou abre o circuito elétrico e bornes para ligação dos fios. Serve para fechar ou abrir o circuito elétrico.

© Tomada Universal Monofásica para uso Geral em Ligações de Eletrodomésticos.

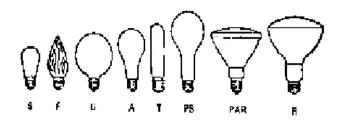


Ò DIAGRAMA UNIFILAR

∑ Interruptor Conjugado

Interruptor com tomada: Permite o funcionamento da lâmpada, sem interferir no funcionamento da tomada, fazendo com que os dois trabalhem independentemente. Fig.1.

9.1 Lâmpada Incandescente (DIMMER)


Lâmpada incandescente: Composta de bulbo de vidro incolor ou leitoso, de uma base de cobre ou outras ligas e um conjunto de peças de que contém o filamento, que é a peça mais importante.

Os filamentos das primeiras lâmpadas eram de carvão, mas atualmente são de tungstênio, que tem um ponto de fusão de aproximadamente 3 400°C. Esta temperatura não é atingida nem pela lâmpada a 1500 watts (2 700°C).

No interior do bulbo de vidro das lâmpadas incandescentes usuais é feito o vácuo, isto é, retirado todo o oxigênio, a fim de que o filamento não se queime, já que o oxigênio alimenta a combustão. Também se usa substituir o oxigênio no interior da lâmpada por um gás inerte (Nitrogênio e argônio). Fig.1.

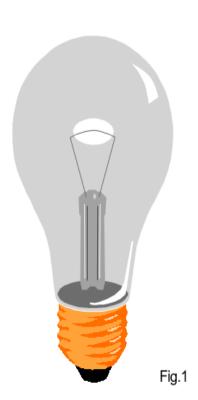
- a) Base metálica
- b) Filamento de tungstênio

- c) Especificação de tensão e potência
- d) Nitrogênio e nitrogênio

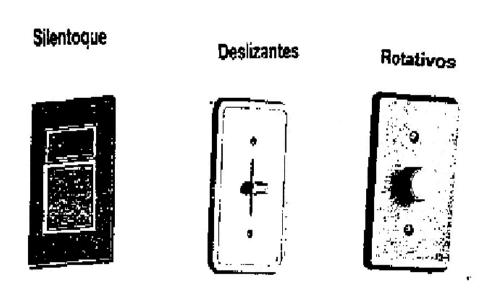
S = Straight (reto)

T = Tubular

F = Flame (chama)

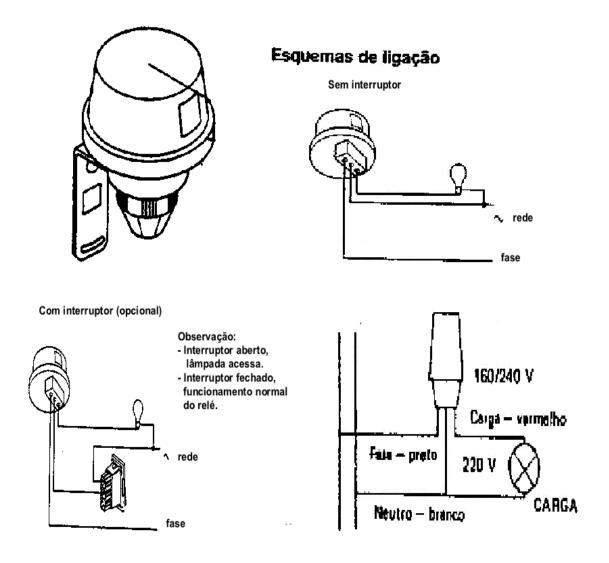

PS = Pear Shaped (tipo pêra)

G = Globular


PAR = Parabólico

A = Comum

R = Refletor


Dimmer: É um dispositivo eletrônico que serve para controlar o brilho de lâmpada incandescente; obtendo-se a luz plena, passando à meia luz até uma completa extinção de seu brilho.

10 FOTOCÉLULA

Em circuitos de iluminação de exteriores (ruas, caixas d'água, pátios, etc.) é muito comum o comando de ligação e desligamento ser automático por elementos fotossensíveis.

Estes elementos são instalados individualmente junto à lâmpada e operam segundo a intensidade de luz recebida. Estes dispositivos são muito úteis porque eliminam o operador para apagar e acender.

