
Nonsinusoidal Circuits

25.1 INTRODUCTION

Any waveform that differs from the basic description of the sinusoidal waveform is referred to
as nonsinusoidal. The most obvious and familiar are the dc, square-wave, triangular, saw-
tooth, and rectified waveforms in Fig. 25.1.

• Become familiar with the components of the

Fourier series expansion for any sinusoidal or

nonsinusoidal function.

• Understand how the appearance and time axis

plot of a waveform can identify which terms of a

Fourier series will be present.

• Be able to determine the response of a network to

any input defined by a Fourier series expansion.

• Learn how to add two or more waveforms defined

by Fourier series expansions.
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FIG. 25.1

Common nonsinusoidal waveforms: (a) dc; (b) square-wave; (c) triangular; (d) sawtooth; (e) rectified.

The output of many electrical and electronic devices are nonsinusoidal, even though the ap-
plied signal may be purely sinusoidal. For example, the network in Fig. 25.2 uses a diode to clip
off the negative portion of the applied signal in a process called half-wave rectification, which
is used in the development of dc levels from a sinusoidal input. You will find in your electron-
ics courses that the diode is similar to a mechanical switch, but it is different because it can con-
duct current in only one direction. The output waveform is definitely nonsinusoidal, but note
that it has the same period as the applied signal and matches the input for half the period.

This chapter demonstrates how a nonsinusoidal waveform like the output in Fig. 25.2 can
be represented by a series of terms. It also explains how to determine the response of a net-
work to such an input.
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25.2 FOURIER SERIES

Fourier series refers to a series of terms, developed in 1822 by Baron
Jean Fourier (Fig. 25.3), that can be used to represent a nonsinusoidal pe-
riodic waveform. In the analysis of these waveforms, we solve for each
term in the Fourier series:

(25.1)

Depending on the waveform, a large number of these terms may be re-
quired to approximate the waveform closely for the purpose of circuit
analysis.

As shown in Eq. (25.1), the Fourier series has three basic parts. The
first is the dc term A0, which is the average value of the waveform over
one full cycle. The second is a series of sine terms. There are no restric-
tions on the values or relative values of the amplitudes of these sine terms,
but each will have a frequency that is an integer multiple of the frequency
of the first sine term of the series. The third part is a series of cosine
terms. There are again no restrictions on the values or relative values of
the amplitudes of these cosine terms, but each will have a frequency that
is an integer multiple of the frequency of the first cosine term of the se-
ries. For a particular waveform, it is quite possible that all of the sine or
cosine terms are zero. Characteristics of this type can be determined by
simply examining the nonsinusoidal waveform and its position on the
horizontal axis.

The first term of the sine and cosine series is called the fundamental
component. It represents the minimum frequency term required to rep-
resent a particular waveform, and it also has the same frequency as the
waveform being represented. A fundamental term, therefore, must be
present in any Fourier series representation. The other terms with higher-
order frequencies (integer multiples of the fundamental) are called the
harmonic terms. A term that has a frequency equal to twice the funda-
mental is the second harmonic; three times, the third harmonic; and so on.

Average Value: A0

The dc term of the Fourier series is the average value of the waveform
over one full cycle. If the net area above the horizontal axis equals that

FIG. 25.3

Baron Jean Fourier.
Courtesy of the Smithsonian Institution

Photo No. 56,822

French (Auxerre, Grenoble, Paris) 
(1768–1830)
Mathematician, Egyptologist, and Administrator
Professor of Mathematics, École Polytechnique

Best known for an infinite mathematical series of
sine and cosine terms called the Fourier series which
he used to show how the conduction of heat in solids
can be analyzed and defined. Although he was pri-
marily a mathematician, a great deal of Fourier’s
work revolved around real-world physical occur-
rences such as heat transfer, sunspots, and the
weather. He joined the École Polytechnique in Paris
as a faculty member when the institute first opened.
Napoleon requested his aid in the research of Egypt-
ian antiquities, resulting in a three-year stay in Egypt
as Secretary of the Institut d’Égypte. Napoleon made
him a baron in 1809, and he was elected to the
Académie des Sciences in 1817.
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FIG. 25.2

Half-wave rectifier producing a nonsinusoidal waveform.

f (t) � A0 �   A1 sin vt � A2 sin 2vt � A3 sin 3vt � . . . � An sin nvt

dc or
average value

sine terms

�  B1 cos vt � B2 cos 2vt � B3 cos 3vt � . . . � Bn cos nvt

cosine terms
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below in one full period, A0 � 0, and the dc term does not appear in the
expansion. If the area above the axis is greater than that below over one
full cycle, A0 is positive and will appear in the Fourier series representa-
tion. If the area below the axis is greater, A0 is negative and will appear
with the negative sign in the expansion.

Odd Function (Point Symmetry)

If a waveform is such that its value for �t is the negative of that for
�t, it is called an odd function or is said to have point symmetry.

Fig. 25.4(a) is an example of a waveform with point symmetry. Note
that the waveform has a peak value at t1 that matches the magnitude (with
the opposite sign) of the peak value at �t1. For waveforms of this type,
all the parameters B1→∞ of Eq. (25.1) will be zero. In fact,

waveforms with point symmetry can be fully described by just the dc
and sine terms of the Fourier series.

f (t)
Nonsinusoidal
waveform

Odd
function

Average value  =  0
(A0  =  0)

–t1

0
Point
symmetry
(about this
point)

t1 t

(a)

t

(b)

f (t)

Sine wave

Point
symmetry

Average value  =  0
(A0  =  0)

0

FIG. 25.4

Point symmetry.

Note in Fig. 25.4(b) that a sine wave is an odd function with point
symmetry.

For both waveforms in Fig. 25.4, the following mathematical rela-
tionship is true:

(odd function) (25.2)

In words, it states that the magnitude of the function at �t is equal to the
negative of the magnitude at �t [t1 in Fig. 25.4(a)].

Even Function (Axis Symmetry)

If a waveform is symmetric about the vertical axis, it is called an even
function or is said to have axis symmetry.

Fig. 25.5(a) is an example of such a waveform. Note that the value of the
function at t1 is equal to the value at �t1. For waveforms of this type, all
the parameters A1→∞ will be zero. In fact,

f 1t 2 � �f 1�t 2

boy30444_ch25.qxd  3/24/06  3:48 PM  Page 1097



1098 ⏐⏐⏐ NONSINUSOIDAL CIRCUITS

NON

f (t)

Even function

Average
value (A0)

t1–t1 0 t

Symmetry about vertical axisNonsinusoidal waveform
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Cosine wave

Average  =  0 (A0  =  0)

t

Symmetry about vertical axis

0

(b)

FIG. 25.5

Axis symmetry.

waveforms with axis symmetry can be fully described by just the dc
and cosine terms of the Fourier series.

Note in Fig. 25.5(b) that a cosine wave is an even function with axis
symmetry.

For both waveforms in Fig. 25.5, the following mathematical rela-
tionship is true:

(even function) (25.3)

In words, it states that the magnitude of the function is the same at �t1 as
at �t [t1 in Fig. 25.5(a)].

Mirror or Half-Wave Symmetry

If a waveform has half-wave or mirror symmetry as demonstrated by
the waveform of Fig. 25.6, the even harmonics of the series of sine
and cosine terms will be zero.

f 1t 2 � f 1�t 2

f (t)

–T T
2

– T 3
2T t0 t1

T
2t1 +

T
2

FIG. 25.6

Mirror symmetry.

In functional form, the waveform must satisfy the following relation-
ship:

(25.4)f 1t 2 � �f a t �
T

2
b
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Eq. (25.4) states that the waveform encompassed in one time interval
T/2 will repeat itself in the next T/2 time interval, but in the negative
sense (t1 in Fig. 25.6). For example, the waveform in Fig. 25.6 from zero
to T/2 will repeat itself in the time interval T/2 to T, but below the hori-
zontal axis.

Repetitive on the Half-Cycle

The repetitive nature of a waveform can determine whether specific har-
monics will be present in the Fourier series expansion. In particular,

if a waveform is repetitive on the half-cycle as demonstrated by the
waveform in Fig. 25.7, the odd harmonics of the series of sine and
cosine terms are zero.

t

f (t)

t1 t1 + T
2

TT
2

FIG. 25.7

A waveform repetitive on the half-cycle.

In functional form, the waveform must satisfy the following relationship:

(25.5)

Eq. (25.5) states that the function repeats itself after each T/2 time in-
terval (t1 in Fig. 25.7). The waveform, however, will also repeat itself af-
ter each period T. In general, therefore, for a function of this type, if the
period T of the waveform is chosen to be twice that of the minimum pe-
riod (T/2), the odd harmonics will all be zero.

Mathematical Approach

The constants A0, A1→n , and B1→n can be determined by using the follow-
ing integral formulas:

(25.6)

(25.7)

(25.8)Bn �
2

T �
T

0

f 1t 2  cos nvt dt

An �
2

T �
T

0

f 1t 2  sin nvt dt

A0 �
1

T �
T

0

f 1t 2  dt

f 1t 2 � f a t �
T

2
b
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These equations have been presented for recognition purposes only; they
are not used in the following analysis.

Instrumentation

Three types of instrumentation are available that reveal the dc, funda-
mental, and harmonic content of a waveform: the spectrum analyzer,
wave analyzer, and Fourier analyzer. The purpose of such instrumenta-
tion is not solely to determine the composition of a particular waveform
but also to reveal the level of distortion that may have been introduced by
a system. For instance, an amplifier may be increasing the applied signal
by a factor of 50, but in the process it may have distorted the waveform
in a way that is quite unnoticeable from the oscilloscope display. The
amount of distortion appears in the form of harmonics at frequencies that
are multiples of the applied frequency. Each of the above instruments re-
veal which frequencies are having the most impact on the distortion, per-
mitting their removal with properly designed filters.

The spectrum analyzer is shown in Fig. 25.8. It has the appearance of
an oscilloscope but rather than display a waveform that is voltage (vertical
axis) versus time (horizontal axis), it generates a display scaled off in dB
(vertical axis) versus frequency (horizontal axis). Such a display is said to
be in the frequency domain versus the time domain of the standard oscillo-
scope. The height of the vertical line in the display of Fig. 25.8 reveals the
impact of that frequency on the shape of the waveform. Spectrum analyz-
ers are unable to provide the phase angle associated with each component.

EXAMPLE 25.1 Determine which components of the Fourier series are
present in the waveforms in Fig. 25.9.

FIG. 25.8

Spectrum analyzer.
(Courtesy of Hewlett Packard)

tTT
2

0

10 V

e

tTT
2

5 mA

i

(a)

–5 mA

(b)

FIG. 25.9

Example 25.1.

Solutions:

a. The waveform has a net area above the horizontal axis and therefore
will have a positive dc term A0.

The waveform has axis symmetry, resulting in only cosine terms
in the expansion.
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The waveform has half-cycle symmetry, resulting in only even
terms in the cosine series.

b. The waveform has the same area above and below the horizontal axis
within each period, resulting in A0 � 0.

The waveform has point symmetry, resulting in only sine terms
in the expansion.

EXAMPLE 25.2 Write the Fourier series expansion for the waveforms
in Fig. 25.10.

v
20 V

0

(a)

t

i

t

Sinusoidal
waveform

5 mA

0

(b)

v

t0

Vav  =  8 V

20 V

(c)

FIG. 25.10

Example 25.2.

Solutions:

a. A0 � 20 A1→n � 0 B1→n � 0
y� 20

b. A0 � 0 A1 � 5 � 10�3 A2→n � 0 B1→n � 0
i � 5 � 10�3 sin Vt

c. A0 � 8 A1→n � 0 B1 � 12 B2→n � 0
y� 8 � 12 cos Vt

EXAMPLE 25.3 Sketch the following Fourier series expansion:

y� 2 � 1 cos � � 2 sin �

Solution: Note Fig. 25.11.
The solution could be obtained graphically by first plotting all of the

functions and then considering a sufficient number of points on the hor-
izontal axis; or phasor algebra could be used as follows:

1 cos � � 2 sin � � 1 V �90° � 2 V �0° � j 1 V � 2 V
� 2 V � j 1 V � 2.236 V �26.57°
� 2.236 sin(� � 26.57°)

and y� 2 � 2.236 sin (A � 26.57°)
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1

v  =  2 + 1 cos � + 2 sin �

26.57°

0

2 sin �

1 cos �

�  =  qt

2.236 V

2

FIG. 25.11

Example 25.3.

which is simply the sine wave portion riding on a dc level of 2 V. That is,
its positive maximum is 2 V � 2.236 V � 4.236 V, and its minimum is
2 V � 2.236 V � �0.236 V.

EXAMPLE 25.4 Sketch the following Fourier series expansion:

i � 1 sin vt � 1 sin 2vt

Solution: See Fig. 25.12. Note that in this case the sum of the two si-
nusoidal waveforms of different frequencies is not a sine wave. Recall
that complex algebra can be applied only to waveforms having the same
frequency. In this case, the solution is obtained graphically point by
point, as shown for t � t1.

i
i  =  1 sin qt + 1 sin 2qt

qt

1 sin 2qt
t1
(i  =  0)1 sin qt

FIG. 25.12

Example 25.4.

As an additional example in the use of the Fourier series approach,
consider the square wave shown in Fig. 25.13. The average value is zero,
so A0 � 0. It is an odd function, so all the constants B1→n equal zero; only
sine terms are present in the series expansion. Since the waveform satis-
fies the criteria for f (t) � �f (t � T/2), the even harmonics are also zero.
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half-wave symmetry
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FIG. 25.13

Square wave.

The expression obtained after evaluating the various coefficients us-
ing Eq. (25.8) is

v

Vm

Vm

0

Fundamental

Fundamental + third harmonic

Vm
3

p
p

(T) 2p qt

Third harmonic

.

3
2

T
2

p
2

4
p

4
p

FIG. 25.14

Fundamental plus third harmonic.

(25.9)y �
4
p

 Vm a sin vt �
1

3
 sin 3vt �

1

5
 sin 5vt �

1

7
 sin 7vt � � � � �

1
n

 sin nvt b

Note that the fundamental does indeed have the same frequency as that
of the square wave. If we add the fundamental and third harmonics, we
obtain the results shown in Fig. 25.14.

Even with only the first two terms, a few characteristics of the square
wave are beginning to appear. If we add the next two terms (Fig. 25.15),
the width of the pulse increases, and the number of peaks increases.

As we continue to add terms, the series better approximate the square
wave. Note, however, that the amplitude of each succeeding term di-
minishes to the point at which it is negligible compared with those of the
first few terms. A good approximation is to assume that the waveform is
composed of the harmonics up to and including the ninth. Any higher
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v

Vm

Number of peaks  =  number of terms added

Fundamental + 3rd, 5th, 7th harmonics

Square wave

0 p 2p qtp
2 p3

2

FIG. 25.15

Fundamental plus third, fifth, and seventh harmonics.

harmonics would be less than one-tenth the fundamental. If the wave-
form just described were shifted above or below the horizontal axis, the
Fourier series would be altered only by a change in the dc term. Fig.
25.16(c), for example, is the sum of Fig. 25.16(a) and (b). The Fourier
series for the complete waveform is, therefore,

� Vm �
4
p

 Vm a sin vt �
1

3
 sin 3vt �

1

5
 sin 5vt �

1

7
 sin 7vt � � � � b

y � y1 � y2 � Vm � Eq. 125.9 2

=+
v

2Vm

0 � �t

(c)

v2

0 �

Vm

–Vm
�t

(b)

v1

0

Vm

�t

(a)

� � �3�2�3�2�

FIG. 25.16

Shifting a waveform vertically with the addition of a dc term.

The equation for the half-wave rectified pulsating waveform in Fig.
25.17(b) is

(25.10)y2 � 0.318Vm � 0.500Vm sin a � 0.212Vm cos 2a � 0.0424Vm cos 4a � � � �

The waveform in Fig. 25.17(c) is the sum of the two in Fig. 25.17(a) and
(b). The Fourier series for the waveform in Fig. 25.17(c) is, therefore,

 � �0.500Vm � 0.318Vm � 0.500Vm sin a � 0.212Vm cos 2a � 0.0424Vm cos 4a � � � �

 yT � y1 � y2 � �
Vm

2
� Eq. 125.10 2

and y � Vm c1 �
4
p
a sin vt �

1

3
 sin 3vt �

1

5
 sin 5vt �

1

7
 sin 7vt � � � � b d
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(a)

v1

a0
Vm
2

–

+

(b)

v2

a0

Vm

p

(c)

vT

a0
Vm
2

–

= Vm
2 p

2p 3p

3p2p

FIG. 25.17

Lowering a waveform with the addition of a negative dc component.

If either waveform were shifted to the right or left, the phase shift
would be subtracted from or added to, respectively, the sine and cosine
terms. The dc term would not change with a shift to the right or left.

If the half-wave rectified signal is shifted 90° to the left, as in Fig.
25.18, the Fourier series becomes

v

– 0 p 2p 3p �

Vm

p
2

p3
2

p5
2

p
2

FIG. 25.18

Changing the phase angle of a waveform.

and yT � �0.182Vm � 0.5Vm sin � � 0.212Vm cos 2� � 0.0424Vm cos 4� � � � �

25.3 CIRCUIT RESPONSE TO A 
NONSINUSOIDAL INPUT

The Fourier series representation of a nonsinusoidal input can be ap-
plied to a linear network using the principle of superposition. Recall
that this theorem allowed us to consider the effects of each source of a
circuit independently. If we replace the nonsinusoidal input with the
terms of the Fourier series deemed necessary for practical considera-
tions, we can use superposition to find the response of the network to
each term (Fig. 25.19).

The total response of the system is then the algebraic sum of the val-
ues obtained for each term. The major change between using this theo-
rem for nonsinusoidal circuits and using it for the circuits previously
described is that the frequency will be different for each term in the non-
sinusoidal application. Therefore, the reactances

v � 0.318Vm  � 0.500Vm sin(� � 90°) � 0.212Vm cos 2(� � 90°) � 0.0424Vm cos 4(� � 90°) � •   •   •

   � 0.318Vm  � 0.500Vm cos � � 0.212Vm cos(2� � 180°) � 0.0424Vm cos(4� � 360°) � •   •   •

   v � 0.318Vm  � 0.500Vm cos � � 0.212Vm cos 2� � 0.0424Vm cos 4�� •   •   •

cos �

and
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e  =  A0 + A1 sin � + . . . + An sin n� + . . .
+ B1 cos � + . . . + Bn cos n� + . . .

+

–

e Linear
network

Linear network

+

–

A1 sin �

+

–

An sin n�

+

–

B1 cos �

+

–

Bn cos n�

A0

+

–

FIG. 25.19

Setting up the application of a Fourier series of terms to a linear network.

will change for each term of the input voltage or current.
In Chapter 13, we found that the rms value of any waveform was

given by

If we apply this equation to the following Fourier series:

B
1

T �
T

0

f 
21t 2  dt

XL � 2pfL  and��XC �
1

2pfC

y1a 2 � V0 � Vm1
 sin a � � � � � Vmn

 sin na � V�m1
 cos a � � � � � V�mn

 cos na

then

(25.11)

However, since

then

(25.12)

Similarly, for

Vrms � 2V 0
2 � V 1rms

2 � � � � � Vnrms
2 � V�1rms

2 � � � � � V�nrms
2

Vm1
2

2
� a Vm1

12
b a Vm1

12
b � 1V1rms

2 1V1rms
2 � V 2

1rms

Vrms � BV0
2 �

Vm1
2 � � � � � Vmn

2 � V�m1
2 � � � � � V�mn

2

2

i1a 2 � I0 � Im1
 sin a � � � � � Imn

 sin na � I�m1
 cos a � � � � � I�mn

 cos na

we have

(25.13)Irms � BI0
2 �

Im1
2 � � � � � Imn

2 � I�m1
2 � � � � � I�mn

2

2
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and

(25.14)

The total power delivered is the sum of that delivered by the corre-
sponding terms of the voltage and current. In the following equations, all
voltages and currents are rms values:

(25.15)

(25.16)

or (25.17)

with Irms as defined by Eq. (25.13), and, similarly,

(25.18)

with Vrms as defined by Eq. (25.11).

EXAMPLE 25.5

a. Sketch the input resulting from the combination of sources in Fig.
25.20.

b. Determine the rms value of the input in Fig. 25.20.

Solutions:

a. Note Fig. 25.21.
b. Eq. (25.12):

It is particularly interesting to note from Example 25.5 that the rms value
of a waveform having both dc and ac components is not simply the sum of
the effective values of each. In other words, there is a temptation in the ab-
sence of Eq. (25.12) to state that Vrms � 4V � 0.707 (6V) � 8.242V, which
is incorrect and, in fact, exceeds the correct level by some 41%.

Instrumentation

It is important to realize that not every DMM will read the rms value of
nonsinusoidal waveforms such as the one appearing in Fig. 25.21. Many
are designed to read the rms value of sinusoidal waveforms only. It is

 � 5.831 V

 � B 14 V 2 2 �
16 V 2 2

2
� B16 �

36

2
 V � 134 V

 Vrms � BV 0
2 �

Vm
2

2

PT �
Vrms

2

R

PT � Irms
2 R

PT � I 0
2R � I1

2R � � � � � In
2R � � � �

PT � V0 I0 � V1I1 cos u1 � � � � � VnIn cos un � � � �

Irms � 2I 0
2 � I 1rms

2 � � � � � Inrms
2 � I�1rms

2 � � � � � I�nrms
2

v

+

4 V
–

+

–

6 sin �t�

+

–

FIG. 25.20

Example 25.5.

6 V

4 V

v  =  4 V + 6 sin qt

0 qt

FIG. 25.21

Wave pattern generated by the source in Fig. 25.20.
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important to read the manual provided with the meter to see if it is a true
rms meter that can read the rms value of any waveform.

We learned in Chapter 13 that the rms value of a square wave is the
peak value of the waveform. Let us test this result using the Fourier ex-
pansion and Eq. (25.11).

EXAMPLE 25.6 Determine the rms value of the square wave of Fig.
25.13 with Vm � 20 V using the first six terms of the Fourier expansion,
and compare the result to the actual rms value of 20 V.

Solution:

e

vR

R  =  3 �
+

–

C  = F1
8

vC

i

FIG. 25.22

Example 25.7.

10 sin 2t

vR

R  =  3 �

+

–

vC

i

XC  = 1
�C

1
(2 rad/s)(  F)

= 1
8

=  4 �
12 V

+

–

FIG. 25.23

Circuit in Fig. 25.22 with the components of the Fourier series input.

y� 25.465 sin vt � 8.488 sin 3vt � 5.093 sin 5vt � 3.638 sin 7vt � 2.829 sin 9vt � 2.315 sin 11vt

Eq. (25.11):

� 19.66 V

� B 10 V 2 2 �
125.465 V 2 2 � 18.488 V 2 2 � 15.093 V 2 2 � 13.638 V 2 2 � 12.829 V 2 2 � 12.315 V 2 2

2

Vrms � BV0
2 �

Vm1
2 � Vm2

2 � Vm3
2 � Vm4

2 � Vm5
2 � Vm6

2

2

�
4
p
a 1

9
b 120 V 2  sin 9vt �

4
p
a 1

11
b 120 V 2  sin 11vt

y �
4
p
120 V 2  sin vt �

4
p
a 1

3
b 120 V 2  sin 3vt �

4
p
a 1

5
b 120 V 2  sin 5vt �

4
p
a 1

7
b 120 V 2  sin 7vt

The solution differs less than 0.4 V from the correct answer of 20 V.
However, each additional term in the Fourier series brings the result closer
to the 20 V level. An infinite number results in an exact solution of 20 V.

EXAMPLE 25.7 The input to the circuit in Fig. 25.22 is the following:

e � 12 � 10 sin 2t

a. Find the current i and the voltages yR and yC.
b. Find the rms values of i, yR, and yC.
c. Find the power delivered to the circuit.

Solutions:

a. Redraw the original circuit as shown in Fig. 25.23. Then apply su-
perposition:

1. For the 12 V dc supply portion of the input, I � 0 since the ca-
pacitor is an open circuit to dc when yC has reached its final
(steady-state) value. Therefore,

VR � IR � 0 V and VC � 12 V

boy30444_ch25.qxd  3/24/06  3:50 PM  Page 1108



CIRCUIT RESPONSE TO A NONSINUSOIDAL INPUT ⏐⏐⏐ 1109

NON

2. For the ac supply,

Z � 3 	 � j 4 	 � 5 	 ��53.13°

and

and

In the time domain,

i � 0 � 2 sin(2t � 53.13°)

Note that even though the dc term was present in the expression
for the input voltage, the dc term for the current in this circuit is
zero:

yR � 0 � 6 sin(2t � 53.13°)

and yC � 12 � 8 sin(2t � 36.87°)

b. Eq. (25.14):

Eq. (25.12):

Eq. (25.12):

c.

EXAMPLE 25.8 Find the response of the circuit in Fig. 25.24 to the in-
put shown.

e � 0.318Em � 0.500Em sin vt � 0.212Em cos 2vt � 0.0424Em cos 
4vt � . . .

Solution: For discussion purposes, only the first three terms are used to
represent e. Converting the cosine terms to sine terms and substituting for
Em gives us

e � 63.60 � 100.0 sin vt � 42.40 sin(2vt � 90°)

Using phasor notation, the original circuit becomes like the one shown in
Fig. 25.25.

Applying Superposition For the dc term (E0 � 63.6 V):

 ZT � R �0° � 6 	 �0°
 XL � 0���1short for dc 2

P � Irms
2 R � a 2

12
 A b 2

 13 	 2 � 6 W

VCrms
� B 112 V 2 2 �

18 V 2 2
2

� 1176 V � 13.267 V

VRrms
� B 10 2 2 �

16 V 2 2
2

� 118 V � 4.243 V

Irms � B 10 2 2 �
12 A 2 2

2
� 12 A � 1.414 A

 �
8

12
 V ��36.87°

 VC � 1I �u 2 1XC ��90° 2 � a 2

12
 A ��53.13° b 14 	 ��90° 2

 �
6

12
 V ��53.13°

 VR � 1I �u 2 1R �0° 2 � a 2

12
 A ��53.13° b 13 	 �0° 2

I �
E
Z

�

10

12
 V �0°

5 	 ��53.13°
�

2

12
 A ��53.13°

e

vR

R  =  6 �
+

–

vL

i

L  =  0.1 H

q  =  377 rad/s

Em  =  200

0 p 2p 3p qt

(b)

(a)

e

FIG. 25.24

Example 25.8.
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VR

6 �

+ –

I1 I2

L  =  0.1 H VL

+

–

I0

E0  =  63.6 V

E1  =  70.71 V ∠0°
+

–

E2  =  29.98 V ∠90°
+

–

q  =  377 rad/s

2q  =  754 rad/s

ZT

+

–

FIG. 25.25

Circuit in Fig. 25.24 with the components of the Fourier series input.
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The average power is

For the fundamental term (E1 � 70.71 V �0°, v � 377):

The average power is

For the second harmonic (E2 � 29.98 V ��90°, v� 754): The phase
angle of E2 was changed to �90° to give it the same polarity as the input
voltages E0 and E1.

The average power is

P2 � I2
2R � 10.396 A 2 216 	 2 � 0.941 W

 � 29.9 V ��84.45°

 VL2
� 1I2 �u 2 1XL2

 �90° 2 � 10.396 A ��174.45° 2 175.4 	 �90° 2
 � 2.38 V ��174.45°

 VR2
� 1I2 �u 2 1R �0° 2 � 10.396 A ��174.45° 2 16 	 �0° 2

 I2 �
E2

ZT2

�
29.98 V ��90°

75.64 	 �85.45°
� 0.396 A ��174.45°

 ZT2
� 6 	 � j 75.4 	 � 75.64 	 �85.45°

 XL2
� vL � 1754 rad>s 2 10.1 H 2 � 75.4 	

P1 � I1
2R � 11.85 A 2 216 	 2 � 20.54 W

 � 69.75 V �9.04°

 VL1
� 1I1 �u 2 1XL1

 �90° 2 � 11.85 A ��80.96° 2 137.7 	 �90° 2
 � 11.10 V ��80.96°

 VR1
� 1I1 �u 2 1R �0° 2 � 11.85 A ��80.96° 2 16 	 �0° 2

 I1 �
E1

ZT1

�
70.71 V �0°

38.17 	 �80.96°
� 1.85 A ��80.96°

 ZT1
� 6 	 � j 37.7 	 � 38.17 	 �80.96°

 XL1
� vL � 1377 rad>s 2 10.1 H 2 � 37.7 	

P0 � I 2
0 R � 110.60 A 2 216 	 2 � 674.2 W

 VL0
� 0

 VR0
� I0R � E0 � 63.60 V

 I0 �
E0

R
�

63.6 V

6 	
� 10.60 A
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The Fourier series expansion for i is

i � 10.6 � 1211.85 2  sin1377t � 80.96° 2 � 1210.396 2  sin1754t � 174.45° 2
and

The Fourier series expansion for yR is

Irms � 2110.6 A 2 2 � 11.85 A 2 2 � 10.396 A 2 2 � 10.77 A

yR � 63.6 � 12111.10 2  sin1377t � 80.96° 2 � 1212.38 2  sin1754t � 174.45° 2
and

The Fourier series expansion for yL is

VRrms
� 2163.6 V 2 2 � 111.10 V 2 2 � 12.38 V 2 2 � 64.61 V

yL � 12169.75 2  sin1377t � 9.04° 2 � 12129.93 2  sin1754t � 84.45° 2
and

The total average power is

25.4 ADDITION AND SUBTRACTION 
OF NONSINUSOIDAL WAVEFORMS

The Fourier series expression for the waveform resulting from the addi-
tion or subtraction of two nonsinusoidal waveforms can be found using
phasor algebra if the terms having the same frequency are considered
separately.

For example, the sum of the following two nonsinusoidal waveforms
is found using this method:

y1 � 30 � 20 sin 20t � � � � � 5 sin(60t � 30°)
y2 � 60 � 30 sin 20t � 20 sin 40t � 10 cos 60t

1. dc terms:

2. v � 20:

and

3. v � 40:

4. v � 60:

5 sin(60t � 30°) � (0.707)(5) V �30° � 3.54 V �30°
10 cos 60t � 10 sin(60t � 90°) ⇒ (0.707)(10) V �90°

� 7.07 V �90°

and yT3
� 13.24 sin160t � 70.85° 2

 VT3
� 9.36 V �70.85°

 � 3.07 V � j 1.77 V � j 7.07 V � 3.07 V � j 8.84 V

 VT3
� 3.54 V �30° � 7.07 V �90°

yT2
� 20 sin 40t

yT1
� 50 sin 20t

VT11max2 � 30 V � 20 V � 50 V

VT0
� 30 V � 60 V � 90 V

PT � Irms
2 R � 110.77 A 2 216 	 2 � 695.96 W � P0 � P1 � P2

VLrms
� 2169.75 V 2 2 � 129.93 V 2 2 � 75.90 V
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with

FIG. 25.26

Using PSpice to apply four terms of the Fourier expansion of a 10 V square
wave to a load resistor of 1 kΩ.

25.5 COMPUTER ANALYSIS

PSpice

Fourier Series The computer analysis begins with a verification of
the waveform in Fig. 25.15, demonstrating that only four terms of a
Fourier series can generate a waveform that has a number of characteris-
tics of a square wave. The square wave has a peak value of 10 V at a fre-
quency of 1 kHz, resulting in the following Fourier series using Eq. (25.9)
(and recognizing that v � 2pf � 6283.19 rad/s):

Each term of the Fourier series is treated as an independent ac source
as shown in Fig. 25.26 with its peak value and applicable frequency. The
sum of the source voltages appears across the resistor R and generates the
waveform in Fig. 25.27.

 � 12.732 sin vt � 4.244 sin 3vt � 2.546 sin 5vt � 1.819 sin 7vt

 y �
4
p
110 V 2 a sin vt �

1

3
 sin 3vt �

1

5
 sin 5vt �

1

7
 sin 7vt b

yT � y1 � y2 � 90 � 50 sin 20t � 20 sin 40t � 13.24 sin(60t � 70.85°)

Each source used VSIN, and since we want to display the result
against time, choose Time Domain(Transient) in the Simulation Set-
tings. For each source, select the Property Editor dialog box. Set AC,
FREQ, PHASE, VAMPL, and VOFF (at 0 V). (Due to limited space,
only VAMPL, FREQ, and PHASE are displayed in Fig. 25.26.) Under
Display, set all of the remaining quantities on Do Not Display.
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Set the Run to time at 2 ms so that two cycles of the fundamental fre-
quency of 1 kHz appear. The Start saving data after remains at the de-
fault value of 0 s, and the Maximum step size at 1 ms, even though
2 ms/1000 � 2 ms, because we want to have additional plot points for the
complex waveform. Once the SCHEMATIC1 window appears, Trace-
Add Trace-V(R:1)-OK results in the waveform in Fig. 25.27. To make
the horizontal line at 0 V heavier, right-click on the line, select
Properties, and then choose the green color and wider line. Click OK,
and the wider line in Fig. 25.27 results, making it a great deal clearer
where the 0 V line is located. Through the same process, make the curve
yellow and wider as shown in the same figure. Using the cursors, you
find that the first peak reaches 11.84 V and then drops to 8.920 V. The
average value of the waveform is clearly �10 V in the positive region as
shown by the dashed line entered using Plot-Label-Line. In every re-
spect, the waveform is beginning to have the characteristics of a periodic
square wave with a peak value of 10 V and a frequency of 1 kHz.

Fourier Components A frequency spectrum plot revealing the mag-
nitude and frequency of each component of a Fourier series can be ob-
tained by returning to Plot and selecting Axis Settings followed by X
Axis and then Fourier under Processing Options. Click OK, and a num-
ber of spikes appear on the far left of the screen, with a frequency spec-
trum that extends from 0 Hz to 600 kHz. Select Plot-Axis Settings again,
go to Data Range, and select User Defined to change the range to 0 Hz
to 10 kHz since this is the range of interest for this waveform. Click OK,
and the graph in Fig. 25.28 results, giving the magnitude and frequency
of the components of the waveform. Using the left cursor, you find that
the highest peak is 12.738 V at 1 kHz, comparing very well with the
source VI having a peak value of 12.732 V at 1 kHz. Using the right-click
cursor, you can move over to 3 kHz and find a magnitude of 4.246 V,
again comparing very well with source V2 with a peak value of 4.244 V.

FIG. 25.27

The resulting waveform of the voltage across the resistor R in Fig. 25.26.
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FIG. 25.28

The Fourier components of the waveform in Fig. 25.27.
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(IV)

Am
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3 T

T
3

T
3

–

FIG. 25.29

Problem 1.

PROBLEMS

SECTION 25.2 Fourier Series

1. For the waveforms in Fig. 25.29, determine whether the fol-
lowing will be present in the Fourier series representation:

a. dc term
b. cosine terms
c. sine terms
d. even-ordered harmonics
e. odd-ordered harmonics

1114
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e

vR

R  =  12 �
+

–

vL

i

L  =  0.02 H

FIG. 25.31

Problems 10, 11, and 12.

2. If the Fourier series for the waveform in Fig. 25.30(a) is

i �
2Im

p
a 1 �

2

3
 cos 2vt �

2

15
 cos 4vt �

2

35
 cos 6vt � � � �

find the Fourier series representation for waveforms (b)
through (d).

(a)

(c)

0

i

Im

tω

tω0

Im—–
2

Im—–
2

i

(b)

(d)

0

i

Im

tω

tω0

i

Im

FIG. 25.30

Problem 2.

3. Sketch the following nonsinusoidal waveforms with � � vt
as the abscissa:
a. y� �4 � 2 sin a
b. y� (sin a)2

c. i � 2 � 2 cos a

4. Sketch the following nonsinusoidal waveforms with � as the
abscissa:
a. i � 3 sin � � 6 sin 2a
b. y� 2 cos 2a � sin a

5. Sketch the following nonsinusoidal waveforms with vt as
the abscissa:
a. i � 50 sin vt � 25 sin 3vt
b. i � 50 sin � � 25 sin 3�
c. i � 4 � 3 sin vt � 2 sin 2vt � 1 sin 3vt

SECTION 25.3 Circuit Response to a 

Nonsinusoidal Input

6. Find the average and effective values of the following non-
sinusoidal waves:
a. y� 100 � 50 sin vt � 25 sin 2vt
b. i � 3 � 2 sin(vt � 53°) � 0.8 sin(2vt � 70°)

7. Find the rms value of the following nonsinusoidal waves:
a. y� 20 sin vt � 15 sin 2vt � 10 sin 3vt
b. i � 6 sin(vt � 20°) � 2 sin(2vt � 30°)

�1 sin(3vt � 60°)

8. Find the total average power to a circuit whose voltage and
current are as indicated in Problem 6.

9. Find the total average power to a circuit whose voltage and
current are as indicated in Problem 7.

10. The Fourier series representation for the input voltage to the
circuit in Fig. 25.31 is

e � 18 � 30 sin 400t

a. Find the nonsinusoidal expression for the current i.
b. Calculate the rms value of the current.
c. Find the expression for the voltage across the resistor.
d. Calculate the rms value of the voltage across the resistor.
e. Find the expression for the voltage across the reactive

element.
f. Calculate the rms value of the voltage across the reactive

element.
g. Find the average power delivered to the resistor.
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11. Repeat Problem 10 for

e � 24 � 30 sin 400t � 10 sin 800t

12. Repeat Problem 10 for the following input voltage:

e � �60 � 20 sin 300t � 10 sin 600t

13. Repeat Problem 10 for the circuit in Fig. 25.32.

e

vR

R  =  15 �
+

–

vC

i

C  =  125 mF

FIG. 25.32

Problem 13.

200 �1.2 mH
+
vo

–

200 mF

i

(b)

i

(a)

0 p 2p 3p
qt

–p

q  =  377
10 mA

FIG. 25.34

Problem 15.

*14. The input voltage in Fig. 25.33(a) to the circuit in Fig.
25.33(b) is a full-wave rectified signal having the following
Fourier series expansion:

where v � 377.
a. Find the Fourier series expression for the voltage yo us-

ing only the first three terms of the expression.
b. Find the rms value of yo .
c. Find the average power delivered to the 1 k� resistor.

*15. Find the Fourier series expression for the voltage yo in Fig.
25.34.

SECTION 25.4 Addition and Subtraction 

of Nonsinusoidal Waveforms

16. Perform the indicated operations on the following nonsinu-
soidal waveforms:
a. [60 � 70 sin vt � 20 sin(2vt � 90°) � 10 sin(3vt �

60°)] � [20 � 30 sin vt � 20 cos 2vt � 5 cos 3vt]
b. [20 � 60 sin a� 10 sin(2a� 180°) � 5 cos(3a� 90°)]

� [5 � 10 sin a � 4 sin(3a � 30°)]

e
100 V

0 qt

(a)

1 k�0.1 H
+
vo

–

1 mF

+
e
–

(b)

p
2

p3
2

– p
2

FIG. 25.33

Problem 14.

e �
12 2 1100 V 2

p
a1 �

2

3
 cos 2vt �

2

15
 cos 4vt �

2

53
 cos 6vt � � � � b
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17. Find the nonsinusoidal expression for the current is of the
diagram in Fig. 25.35.

i2 � 10 � 30 sin 20t � 0.5 sin(40t � 90°)
i1 � 20 � 4 sin(20t � 90°) � 0.5 sin(40t � 30°)

i1

is

i2

FIG. 25.35

Problem 17.

e
+

–

v1+ –

v2

+

–

FIG. 25.36

Problem 18.

18. Find the nonsinusoidal expression for the voltage e of the
diagram in Fig. 25.36.

y1 � 20 � 200 sin 600t � 100 cos 1200t � 75 sin 1800t
y2 � �10 � 150 sin(600t � 30°) � 50 sin(1800t � 60°)

20. Plot a half-rectified waveform with a peak value of 20 V us-
ing Eq. (25.10). Use the dc term, the fundamental term, and
four harmonics. Compare the resulting waveform to the
ideal half-rectified waveform.

21. Demonstrate the effect of adding two more terms to the
waveform in Fig. 25.27, and generate the Fourier spectrum.

GLOSSARY

Axis symmetry A sinusoidal or nonsinusoidal function that has
symmetry about the vertical axis.

Even harmonics The terms of the Fourier series expansion that
have frequencies that are even multiples of the fundamental
component.

Fourier series A series of terms, developed in 1826 by Baron
Jean Fourier, that can be used to represent a nonsinusoidal
function.

Fundamental component The minimum frequency term re-
quired to represent a particular waveform in the Fourier series
expansion.

Half-wave (mirror) symmetry A sinusoidal or nonsinusoidal
function that satisfies the relationship

Harmonic terms The terms of the Fourier series expansion that
have frequencies that are integer multiples of the fundamental
component.

Nonsinusoidal waveform Any waveform that differs from the
fundamental sinusoidal function.

Odd harmonics The terms of the Fourier series expansion that
have frequencies that are odd multiples of the fundamental
component.

Point symmetry A sinusoidal or nonsinusoidal function that sat-
isfies the relationship f (a) � �f (�a).

f 1t 2 � �f a t �
T

2
b

SECTION 25.5 Computer Analysis

PSpice

19. Plot the waveform in Fig. 25.11 for two or three cycles. Then
obtain the Fourier components, and compare them to the ap-
plied signal.
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